
Elementary probability theory

What is probability? And why does it work?

Everybody has some intuitive feeling about randomness. Yet to
many people it is not far from magic. And it is easy to get tricked
or make mistakes (see appendix at the end of the chapter).

To say that probability works means that if the probability of
some event is, say, 1/3, and we reproduce many times the experi-
ment producing the event, then it will happen roughly one third
of the times. But as we know, this doesn't always work nicely.
Sometimes the event will happen more often, or less often, than
it should. These are exceptions. And by de�nition of exceptions
they are rare.

Any way we want to pinpoint a good de�nition of probability, it
seems to escape like quicksilver. Our explanations end up involv-
ing... probability. But let's give it a try.

In nature there are experiments which, when we replicate them,
keep producing exactly the same results. They are predictable or
deterministic. They are those we mentioned earlier, appearing for
instance in classical mechanics when we can apply Newton's laws.

And there are experiments whose outcomes vary. Those are said
to be random. The randomness comes either from some funda-
mental randomness of nature, like certain phenomena in quantum
mechanics, or from our incomplete knowledge, as said, of the ini-
tial conditions or other things. Yet the results display some ex-
perimental stability in the proportions of occurrences, when the
experiment is repeated many times, which we will come back to.

This fundamental distinction established, to work with probability
theory we need some primitive ideas about randomness, and then
we need to construct a framework.
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Figure 1: Rare events, and equiprobable events.

There are two primitive ideas, which we present with two illustra-
tive examples, �gure 1:

1. Rare events: In an urn, suppose there is a very large num-
ber of white marbles and one black marble. If we plunge
the hand in the urn without looking, and pick a marble at
random, then picking the black marble would be rare, and
we can �safely� count on picking a white marble1.

2. Equiprobable events: If the possible outcomes of an experi-
ment display some symmetry , then each event is considered
as likely as any other. Thus when we spin the wheel shown
on the right side of �gure 1, and wait until it has stopped
and the �xed index points to a color, the �ve colors are said
to be equiprobable. Equiprobable distributions will play an
important role, at �rst, when we begin to talk about the
entropy of systems.

We mentioned the stability of the proportions of occurrences, in a
random experiment reproduced many times. We intuitively � and
correctly � feel that it is linked to the second idea listed above.
But we shall see in a moment that it is also actually an instance
of the �rst idea about rare events.

1One of the many counterintuitive aspects of probability, which we will
have to get used to, is that any marble, if we can distinguish each of them,
is rare. Yet we do pick one. Seen that way, whatever outcome we obtain is
rare. The paradox clears when we distinguish states and events, which are
explained in the sequel of the text.
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Let's now turn to the framework to work with a random experi-

ment and probabilities. The experiment itself is usually denoted
E . Each time we reproduce E , at the end of the experiment the
world is in some state ω, which may be di�erent from replication
to replication.

We are interested in some aspects of ω: we may want to mea-
sure some quantity which has a numerical value, or note a color,
or whatever. Sometimes we are interested in only one feature
of ω and sometimes in several, like picking someone at random,
in a well-speci�ed procedure, and recording both his height and
weight, or level of income and academic degree, or, of a more
physical �avor, measuring the position and velocity of a particle.

The main source of mistakes when working with probabilities is
the ill-de�nition of the experiment E . For instance, when we sim-
ply say �let's pick a person at random�, it is ill-de�ned. The ex-
periment is not su�ciently speci�ed. Do we mean, in the lecture
hall, or out of a subway entrance in New York, and in that case
in which borough, at what time of day, or in the United States,
or on Earth?

Another example � of impossibility this time � is when we say
�let's pick a point at random uniformly over the entire line�. It is
actually impossible. There is no such thing as a density of prob-
ability with the same value from −∞ to +∞2. So we have to be
careful.

Once the experiment E has been speci�ed, we consider that each
time it is performed, the world comes out in some state ω. The
set of the ω's is denoted Ω and is called the space of states, or
set of states. Probabilists call it the universe of possible states
attached to performing E .

We are interested in measuring some features, numerical data or
non numerical data, about ω. Suppose we are interested in a

2But a sequence of densities can become more and more �at and therefore
with almost the same value � necessarily close to zero � everywhere. Similarly,
there is no such thing as a function whose value is zero everywhere except
at one point and whose integral is one. But distributions, which, in one
theoretical approach, are de�ned as limits of functions, can be like that.
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feature denotedX. It depends on ω. In other words it is a function
of ω. It is called a random variable and the measurement made
on a given ω is denoted

X(ω) (1)

It is the result, after having performed the experiment E once, of
the measurement of X on the state ω that E produced.

X(ω) takes its values in the set of possible outcomes of X. Let's
denote it A. Without going into category theory, let's mention
that mathematicians write that X is a function from Ω to A as
follows

X : Ω → A (2)

The set A can be �nite, in�nite and countable, or in�nite and
continuous.

For instance if the experiment E is the throw of a die, X is the
number shown on top after a throw, and the set A is

A = {1, 2, 3, 4, 5, 6} (3)

In this case the abstract set Ω can just be taken to be the set of
results of throwing the die, i.e. Ω = A itself. Then the ω's are
simply the six possible results, and we don't even have to think
about X. It is simply the identity.

Although this simpli�cation is often appropriate, it is better � par-
ticularly when there are several random variables that we want to
measure on the outcome of E � to clearly distinguish the set of
states Ω that is once and for all attached to E and the various sets
of outcomes of random variables.

Let's stress again that A doesn't have to be numerical. Our die,
for instance, could have faces painted with di�erent colors rather
than bearing numbers.



Elementary probability theory 5

Once E , Ω, X and A have been de�ned, the last fundamental con-
cept to introduce in the framework is a probability P .

In advanced probabilities3, mathematicians technically talk about
a measure of probability P on Ω that is σ-additive, etc. And they
introduce it before any random variable. But in this review of el-
ementary probability we don't need to go into this. Furthermore
in an elementary approach, it may obfuscate the link with proba-
bilities as we intuitively know them.

P is de�ned such that any subset of Ω � called an event � has a
probability. In the case of the die, it is particularly simple. Each
ω is itself an interesting event. There are six of them. And if
the die is well balanced they are equiprobable. In other words we
assign to them the same probability. Thus we write

P{X = 5} =
1

6
(4)

meaning that the probability of getting a 5, when throwing the die,
is 1/6. Events are any subsets of Ω, not only the ω's themselves.
We can also write

P{X ≤ 2} =
1

3
(5)

The principle that symmetry, or equivalence somehow, between
the possible states ω implies equiprobability � in other words,
whatever makes them di�erent doesn't a�ect their propensity to

3In the theory of probability, there are two main parts:

1. Elementary probability, developed by Fermat (c. 1605-1665) and Pas-
cal (1623-1662) in the XVIIth century to clarify questions about ran-
domness that had puzzled people for centuries, in particular card play-
ers but not only. The elementary theory was further developed by
people like Chebyshev (1821-1894), Markov (1856-1922), etc. That is
the one we brie�y sketch here.

2. The mathematical theory of probability, developed by Lévy (1886-
1871), Khinchin (1894-1959), Kolmogorov (1903-1987) and others in
the XXth century to give it �rmer foundations than elementary prob-
ability. It uses measure theory, Lebesgue integral, σ-algebra, etc. This
theory is not necessary for our purpose and won't concern us in the
course.
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occur � is often invoked to �gure out the distribution of probabil-
ity P attached to an experiment.

Another possible way to �gure out P is through a large number
of replications of the experiment. We will explain it in a moment.

Finally there may be various probabilistic calculations which we
can also make to relate the distribution of a random variable X
to those of other random variables we already know. This per-
tains to the calculus of probability. And we shall work out many
examples in this course.

Our framework is now complete. It consists of a random exper-
iment E , a big set Ω of possible states of the world after the
performance of E , and a probability P .

framework = [ E , Ω, P ] (6)

And we are interested in measuring various random variables X,
Y , Z, etc. after having performed E4.

Let's now simplify a bit the setting and the notations. For the
time being, the set of possible states will be

Ω = { ω1, ω2, ω2, ... , ωn } (7)

that is a �nite set of outcomes of E . The states are indexed by
i running from 1 to n. For example, when �ipping a coin once,

4In maths manuals, the reader will usually see the framework described as
[ Ω, A, P ], the experiment E not being mentioned � which in our teaching
experience is regrettable. And the extra A, not to be confused with the target
set of any random variable, is the collection of subsets of Ω, but not quite all
of them, only the �measurable� ones. Again, we don't need to be concerned
here with those subtleties.
Interested readers are referred to the book by Alexandrov, Kolmogorov,

Lavrentiev, Mathematics, Dover, 1999, which gives an excellent presentation
of most of the mathematics necessary to do physics, and more. Chapter XV
in the book explains what is measurability, and chapter XI, written by Andreï
Kolmogorov presents elementary probabilities.
A standard reference to study probabilities is the two volume book by

William Feller (1906-1970), An Introduction to Probability Theory and Its

Applications, John Wiley & sons
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there are two states: ω1 = heads, and ω2 = tails.

Later on, we will extend this to an in�nite countable, and then
even an in�nite continuous set Ω5.

Staying with a �nite set Ω, the probabilities of the single states
ωi's will simply be denoted

P (i) (8)

Sometimes they will even be simply denoted Pi (see lecture 2).

They must satisfy

P (i) ≥ 0
n∑
i

P (i) = 1
(9)

Indeed, probabilities are positive numbers. And the total proba-
bility, when we add up the probabilities of all possibilities, should
be equal to one. When performing E we certainly should get some
result.

Probabilities have all sorts of interesting, beautiful and sometimes
surprising properties. The most useful one for us in this course is
the law of large numbers.

Here is what it says. Suppose that we either make many replicas
of the same system, or do the same experiment E over and over a
large number N of times, and we count how many times we get
the i-th outcome ωi. That is some count that we denote Ni. Then
the law says that

lim
N→∞

Ni

N
= P (i) (10)

5In this last case probabilities will be replaced by densities of probability.
Instead of considering P{X = x}, which would usually be equal to 0, we
will consider P{ X ∈ [ x, x + dx ] } = p(x)dx. And, following the custom
in physics, we will often still denote it P (x)dx, keeping in mind that each
random variable has its own density. In other words, when it is necessary to
be explicit, we will write PX(x)dx.
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This is a statement about probabilities, which can be stated more
precisely and rigorously within the framework [ E , Ω, P ]. But
let's approach it at an intuitive level. It says that when we repli-
cate E a larger and larger number of times, and measure the exper-
imental frequency of occurrence of the i-th outcome, this experi-
mental frequency (which is itself a random variable) deviates less
and less i.e. gets closer and closer to the actual probability P (i).

For instance, if we toss a coin a thousand times, the frequency
of heads will be close to 1/2. If we throw it 10 000 times, the
frequency will be even closer to 1/2. In each case, it is only a
probabilistic statement. There can be � and in fact most of the
times there will be � a discrepancy. That discrepancy is itself a
random variable. But it will have a distribution more and more
concentrated, relatively to its range, around 0.

We said earlier that the convergence of experimental frequencies
toward their corresponding theoretical probabilities is actually an
instance of the rare event idea, see �gure 1 and its comments.

The law of large numbers is neither magic, nor some kind of eerie
principle of nature. It stems from the fact that in an urn with one
black ball and very many white balls, if we pick one at random, we
can assume safely that we will pick a white one. It is not always
the case, but it will be extremely rare to pick a black ball. And
for all practical purpose it can be neglected.

Let's see why, in the case of tossing coins, the law is a simple result

in numbering . Consider the experiment F which consists in toss-
ing the coin 1000 times, i.e. repeating E 1000 times. The space
ΩF attached to F has 21000 elements � that is a huge number.
Each are equiprobable. When we perform F once, i.e. when we
repeat E a thousand times, we pick one element in ΩF .

It turns out � and it is not hard to show, although we won't do it
� that most elements in ΩF contain about as many heads as tails.
View them as the white balls in the urn if you like. And the black
balls would be very few. So when we pick one, we pick a white one.

To try to shed even more light on the phenomenon, rather than
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do some combinatorics, consider the 16 possible results, displayed
below, of throwing the coin four times. The reader can check that
there is only one result with zero head. Four results with 1 head.
Six results with 2 heads. Four results with 3 heads, and one result
with 4 heads.

T, T, T, T

T, T, T, H

T, T, H, T

T, T, H, H

T, H, T, T

T, H, T, H

T, H, H, T

T, H, H, H

H, T, T, T

H, T, T, H

H, T, H, T

H, T, H, H

H, H, T, T

H, H, T, H

H, H, H, T

H, H, H, H

So there is a kind of concentration around an equal number of
heads and tails. The counts of the number of heads actually cor-
respond to the so-called Pascal triangle. They are also the coe�-
cients in the development of the polynomial (a+b)N . The concen-
tration about half and half is more marked, of course, when N is
larger than 4, and it grows more and more marked as N increases.

That is what the law of large numbers is about. In probability
theory, it is stated more rigorously than we have done here. It
is proved via an intermediate result called Bienaymé-Chebyshev

inequality6. It is not particularly hard, and is rather elegant. But

6Named after Irénée-Jules Bienaymé (1796-1878), French mathematician,
and Pafnuty Chebyshev (1821-1894), Russian mathematician.
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it is outside what we want to do in this review7.

The law of large numbers, expressed by equation (10), says that
the ratio Ni/N converges �probabilistically� toward P (i) when N
gets very large. In other words,

when we have repeated an experiment a large number of times, we

can use the experimental frequency Ni/N of occurrence of the i-th
outcome as an estimate of P (i).

We use this result all the time.

Now let's go back to a random variable we want to measure, which
is not the outcome of E itself. To get closer to physics concepts
and notations, let's call the random variable F . So let's suppose
that there is a quantity, denoted F (i), that is associated with the
i-th state ωi. Recall expression (7) de�ning the set of states.

F can be some meaningful physical quantity. We can also make
it up. For example if our system is heads and tails, and nothing
but heads and tails, we could assign

F (heads) = +1

F (tails) = −1
(11)

If our system has many more states, we may want to assign a larger
number of possible values taken by F � not necessarily the same
number as the number of elements in Ω though. F is simply some
function of the states. We already mentioned this in expression
(2), let's write it again

F : Ω → A (12)

The random variable F acts on the set of states Ω and takes its
value in the set A. In the case of the coin, Ω = {H, T}, and
the set A in which F takes its values is {+1, −1}. Thus, we

7Another beautiful and useful result is the Central Limit Theorem, which
shows in essence that the Pascal triangle looks more and more, when properly
rescaled, like a bell-shaped curve called a Gaussian. And it is true in a much
more general setting than just �ipping a coin many times. That is in fact the
essential reason why Gaussian distributions pop up all the time in physics
and engineering.
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have made up a numerical random variable � or measurement �
attached to �ipping a coin.

As said, F (i) can also be some meaningful physical quantity. It
could be the energy of the i-th state ωi. Given the state in which
is some system, it has an energy. Its measurement would perhaps
be called in that case

E(i) (13)

Or we could be interested in the momentum of the i-th state. We
would have to choose a good notation not interfering with prob-
abilities. Or it could be something else. It could be whatever we
happen to like to measure on our system.

Then an important quantity is the average of F (i). After this
probability refresher, we will mostly use the quantum mechanical
notation for it, even though we are not doing quantum mechanics.
It is a nice notation. Physicists tend to use it all over the place.
Mathematicians hate it. We just put a pair of brackets around F
to mean its average. It is de�ned as follows

< F > =

n∑
i

F (i)P (i) (14)

In words, it is the average of the values F (i) weighted by their
respective probabilities P (i).

Notice that the average of F (i) does not have to be any of the pos-
sible values that F can take. For example, in the case of the coin,
where F (H) = +1, and F (T ) = −1, and we �ip it a million times,
and the probability is 1/2 for heads and 1/2 for tails, the average
of F will be 0. It is not one of the possible outcomes of F in the
experiment. Yet it is its average. There is no rule why the aver-
age of a measure should be one of its possible experimental values.

Thanks to the law of large numbers, we can write equation (14)
another way.
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< F > ≈
n∑
i

F (i)
Ni

N
(15)

This approximate equality becomes a true equality in the limit
when there is a large number of measurement.

That is it for our mathematical preliminary. We need to know
what a random experiment is, what a state ω is, what a proba-

bility is, what a random variable or random measurement is, and
what is an average, because we will use them over and over.

Before leaving our probability refresher, let's mention that a more
complete presentation of elementary probabilities, would include
the following topics, for which we refer the reader to any good
manual:

1. Variance of a r.v. X. It is the expected value of the squared
deviation of X from its average, and is often denoted σ2

σ2(X) = E{ [X − E(X)]2 }

Both the concept of average, also called mean or expecta-
tion, and the concept of variance of a numerical r.v. were
introduced by Pafnuty Chebyshev in the XIXth century.

2. Standard deviation of a r.v. X. It is the square root of the
variance, therefore it is denoted σ or σX .

3. Independent and dependent random variables.

4. Conditional probabilities

5. Bayes theorem8

8Bayes theorem is �rst of all the formula relating the probabilities of
events A and B and their conditional probabilities

P{A|B} =
P{B|A}P{A}

P{B}

It is also an interpretation of this result in terms of �prior� and �posterior�
probabilities. Note that Bayes theorem, named after Thomas Bayes (1701-
1761), and its interpretation would more properly be called Laplace theorem,
because it is Laplace (1749-1827) who really clari�ed Bayes ideas and result.
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6. Covariance and correlation

7. Gaussian distributions of probabilities

Customary mistakes in elementary probabilities

When talking about probabilities, even educated people may say
wrong things like: since having two accidents is very rare, and
since I already had one, now the chances that I have another one
are much smaller.

On a more sophisticated level, the paradox of Monty Hall, for in-
stance, can befuddle even the best minds. Here is how it goes:
there are two people, one is the guesser who must provide a best
guess, the other is the operator of the game. There are three
closed doors, A, B and C, facing the guesser. Behind one and
only one is a prize. Step one: the guesser must make a guess, for
instance guess door A. Step two: the operator, who knows where
the prize is, doesn't open A, but selects among B and C a door
where the prize is not, and opens it. The guesser sees this new
piece of information. Step three: the guesser is invited to guess
again where the prize is.

Question: Should the guesser change his or her guess, and now
choose the other non opened door, or it doesn't matter?

Answer: It does matter. Even though in some intuitive � but
misguided � view of the game it seems that the new piece of in-
formation is irrelevant, the guesser should change guess, and now
choose the other non opened door. The probability of winning
will go from 1/3 to 2/3.

Before looking up the solution, try to solve it by yourself.9 10

9Solution: One way to see that it is judicious to change guess is to note
that, if the guesser follows this strategy, he or she will lose only when the
prize was behind the initial guess.

10This brief appendix mentioned only two examples of customary mistakes
when thinking about probabilities (one very simple, one just marginally less
simple). For another introduction to elementary probability, more recent
than Feller's two volume book already cited, and oriented toward building an
intuition about probability, we refer the reader to the book by Henk Tijms,
Understanding probability, Cambridge, 2012.


