
Lesson 3 :

Exercises with sequences and series

We saw in the previous lessons that sequences are important in
two respects

1. They enable us to understand notions of elementary topology
on rationals and reals, which shed light on these two sets.

2. They are essential to introduce the fundamental notions of
continuity of certain real functions, and also to calculate,
when they have one, their derivative function.

Regarding point 1 : in a word, rationals, like reals, are dense sets.
However, rationals have �holes�, while reals do not. The set R of
reals is complete. The set Q of rationals is not. This is the main
reason why the set of choice for working with numbers is the set
of reals. And to support the intuition � for those of us who have a
geometric mental view of things � we have the line of numbers that
represents all numbers, from natural numbers to real numbers.

Regarding point 2 : continuous and di�erentiable functions are a
fundamental tool in mathematics and physics. To understand them
well, we must �rst understand sequences of numbers.

We saw that there is no essential di�erence between sequences
and series. They are two di�erent ways of looking at the same
question : the convergence or not of a collection of numbers towards
a limit.

For example, the sequence

1 1.5 1.75 1.875 1.9375 1.96875 etc. (3.1)

and the series
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are two di�erent ways of looking at the same thing.

In our opinion, series are more convenient for studying conver-
gence problems, because their construction, which remains explicit,
better reveals how they are likely to behave.
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This is particularly true of power series, which are a great tool
for studying certain functions. The general form of a power series
is

f(x) = a0 + a1x+ a2x
2 + a3x

3 + ...+ anx
n + ... (3.3)

where the independent variable is x, and the ai's are a countably
in�nite collection of coe�cients.

To use them, we must �rst understand the conditions on the co-
e�cients and the values of the independent variable x under which
they are meaningful, i.e., when they converge.

Exercise 3.1 : Show, without laborious calculations, that
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1

25
= 1.96875 (3.4)

Hint : Use the formula learned in middle school 1 expressing
more simply the sum

1 + a+ a2 + a3 + a4 + a5 (3.5)

We will no longer deal with topology in this 11th grade math
course. We will talk about it a little more in the �nal year of high
school. But it will mainly be a subject for readers who will continue
studying mathematics in college. 2

Lesson 3, which is easier than the previous two but equally fun-
damental, is devoted to exercises with sequences and series. Some
exercises are solved within the lesson text, while others are provi-
ded for readers to deepen and strengthen their understanding. We
don't give the solution of the latter, but we give hints, that often
amount to the solution :-) A note upfront to avoid having to re-
peat it later : serious reading of this book requires completing all

the exercises and even creating some of your own.

We begin with two classic exercises from middle school level : the
�rst suitable for early middle school, and the second for the later
years.

1. We saw it for instance inMiddle school mathematics : 8th and 9th grades,
Eagle's Beak Press, fall 2024.

2. A good introduction to topology is chapter 18 by Pavel Aleksandrov,
in the book by Aleksandrov, Kolmogorov, and Lavrent'ev, mentioned in the
suggested reading at the end of lesson 1.

https://www.amazon.com/dp/2958738523
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Exercise 3.2 : Show that the sum of the �rst n positive
natural numbers is

1 + 2 + 3 + ...+ n =
n(n+ 1)

2
(3.6)

Hint : See the demonstration by Carl Friedrich Gauss (1777,
1855) in exercise I.8.10, of the book Middle school mathema-

tics : 6th and 7th grades, Eagle's Beak Press, fall 2024.

Alternatively, prove formula (3.6) using mathematical induc-
tion 3 (see next exercise to review what mathematical induction
consists of).

Exercise 3.3 : Show that the sum of the �rst n squares of
positive natural numbers is

1 + 22 + 32 + ...+ n2 =
n(n+ 1)(2n+ 1)

6
(3.7)

Hint : Construct a mathematical induction argument. Here
is how to do it :

1. Verify that the formula is true for n = 1.

2. Assume that the formula is true up to n and then show
that it is still true for (n+ 1).

In other words, show that

n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 =

(n+ 1)(n+ 2)[2(n+ 1) + 1]

6
(3.8)

To do this, start by eliminating (n+1) from both sides.
Then multiply both sides by 6. Finally show that, after
these simpli�cation and multiplication by 6, the two sides
are each equal to 2n2 + 7n+ 6.

3. Also called recurrence argument, or reasoning by recurrence.

https://tinyurl.com/y3myspw9
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Here is a third classic exercise from middle school :

Exercise 3.4 : Show that the sum of the inverses of the
natural numbers diverges to plus in�nity. We note it

lim
n→+∞

{
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n

}
= +∞ (3.9)

The following results are beyond the 11th grade high school level
and are included for mathematical culture :

1. The sum of the inverses of prime numbers diverges towards
plus in�nity.

2. The sum of the inverses of the squares of positive integers

converges towards
π2

6
. That is,

lim
n→+∞

{
1 +

1

22
+

1
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+ ...+

1

n2

}
=

π2

6
(3.10)

This second result is called the �Basel problem�. It was solved in
the 18th century by Leonhard Euler (1707, 1783) who, like other
people who looked at the problem, was from Basel. But Euler's
proof was not completely rigorous. We can say that it was heuristic
in a way. The impeccable proof of the Basel problem calls upon
advanced results of the theory of series that were not established
until the 19th century.

Fibonacci sequence

It is a famous sequence de�ned by a recurrence formula after
initializing it with the values of its �rst two terms.

u0 = 1

u1 = 1

then
un+1 = un + un−1 (3.11)

The �rst �fteen terms of the Fibonacci sequence are given in
table 3.1.

https://www.amazon.com/dp/2958738523
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Table 3.1 : First �fteen terms of the Fibonacci sequence.

Historical note : Fibonacci (c. 1170, c. 1250), also known as Leo-
nardo of Pisa, was the son of a merchant from Pisa. He spent several
years in Bougie on the Algerian coast, where his father traded with
Arab merchants of the Maghreb. During his time there, Fibonacci
learned Arabic mathematics, including Al-Khwarizmi's algebra, the
use of positional notation in base 10, and elements of double-entry
bookkeeping.

Upon returning to Italy, he published a book in 1202 titled Liber

Abaci. This work holds a prominent place in the history of mathe-
matics in Europe as it was the �rst to provide a detailed explana-
tion of Arabic numerals and the calculation techniques associated
with them. These numerals were far more convenient for perfor-
ming arithmetic operations compared to the Roman numerals that
had been used so far.

Given that accounting makes extensive use of arithmetic ope-
rations (especially addition and subtraction), it is not surprising
that Fibonacci's book also introduced early accounting techniques
� in particular double-entry bookkeeping � learned from the Arabs,
who had in turn learned them from the Indians. 4

4. The author's website o�ers a free course in double-entry bookkeeping at
https://www.lapasserelle.com/online_courses/accounting

https://tinyurl.com/y3myspw9
https://www.lapasserelle.com/online_courses/accounting
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The Fibonacci sequence obviously diverges, but it has many in-
teresting properties. Let's study the main one. Let the sequence
vn be constructed from the Fibonacci sequence un in the following
manner :

vn =
un+1

un
(3.12)

Then the following result holds :

lim
n→+∞

vn =
1 +

√
5

2
(3.12)

In other words, the sequence of ratios un+1/un converges to the
golden ratio.

Proof :

Before diving into the proof, let's start by examining the �rst
terms of the sequence vn, as recommended, to guide our approach.

Table 3.2 : First twenty terms of the sequence vn.

https://www.amazon.com/dp/2958738523
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How does this sequence behave ? It is neither strictly increasing
nor strictly decreasing. Let's draw it :

Figure 3.1 : Graph of the sequence of ratios vn =
un+1

un
.

We see in �gure 3.1 that the sequence vn alternates by taking
values above and below a limit around 1.6. This is naturally in no
way a demonstration. On the other hand, it guides us to prove the
convergence of vn.

There are several ways to do this. One idea that comes to mind is
to show that the terms with even index of the sequence vn increase
while remaining bounded. This will allow us to assert, by virtue
of the completeness of the set R, that this sequence of even terms
converges to a limit. Then we will show that the limit of the even
terms is (1+

√
5)/2. Finally we will do the analog with odd terms.

Let us start by observing that v0 = 1. Then we have

vn =
un+1

un

vn+1 =
un+2

un+1

vn+2 =
un+3

un+2

https://tinyurl.com/y3myspw9
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We can rewrite vn+2 as follows :

vn+2 =
un+2 + un+1

un+2

= 1 +
un+1

un+2

= 1 +
un+1

un+1 + un

= 1 +
1

un+1+un

un+1

= 1 +
1

1 + un

un+1

= 1 +
1

1 + 1
vn

Or equivalently

vn+2 =
2vn + 1

vn + 1
(3.13)

Let's check our calculations. Given that v0 = 1, it yields

v2 = 1 +
1

2
= 1, 5

v4 = 1 +
1

1 + 1
1,5

= 1 +
1, 5

2, 5
=

4

2, 5
= 1, 6

All is �ne.

Let us move on to the demonstration that vn increases for even
indices and decreases for odd indices. As indicated by formula
(3.13), the term vn+2 is obtained from vn by applying to vn the
function

y =
2x+ 1

x+ 1
(3.14)

Let us try to understand why when we start with x = 1, we get
an increasing sequence. But when we start with x = 2 we get a
decreasing sequence.

The joint graph of the two curves y = 2x+1
x+1 and y = x reveals

what's going on.

https://www.amazon.com/dp/2958738523
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Figure 3.2 : Graphs of y = 2x+1
x+1

and y = x.

As long as x is below the intersection point of the two curves, y
is larger than x, and y remains below the intersection point. When
x is above the intersection point, y is smaller than x, but remains
above the intersection point.

What is the abscissa of the intersection point (which is also its
ordinate) ?

We must solve the equation

x =
2x+ 1

x+ 1
(3.15)

We leave it to the reader to show that the crossing is at the point

with coordinates x = y =
1 +

√
5

2
. This number, which is called

the golden ratio, is generally denoted with the symbol ϕ.

For our demonstration to be mathematically complete, we must
demonstrate logically, and not just show in �gure 3.2, that when
x < ϕ, we have x < y < ϕ. And when ϕ < x, we have ϕ < y < x.
We also leave it as an exercise.

https://tinyurl.com/y3myspw9
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In summary, the sequence of vn's with even index increases and
is bounded. (It is bounded in particular by the abscissa of the
crossing point.) So it converges to a limit l. A bit of epsilonite,
as we did on page 27, shows that this limit necessarily satis�es
the equation giving vn+2 in terms of vn. This is precisely equation
(3.15). Therefore the limit of the sequence of even terms of vn is
the golden ratio. Its value, with a few decimals, is

ϕ = 1.61803... (3.16)

Similarly, the odd-index terms of vn decrease and are bounded
from below. Therefore they have a limit, and this limit is also ϕ.

Q.E.D.

The demonstration we have just presented does not claim to be
the only one, nor the most elegant. Rather, it aims to illustrate how
to tackle a problem : think it through, choose an approach, take the
right tools out of your toolbox, and valiantly attack the problem.
Sometimes the approach works ; sometimes it doesn't, and we have
to try a di�erent path. Here, it worked.

Doing mathematics is not about memorizing a large set of tricks
to solve various problems, as is still too often emphasized in some
schools. Our goal is not to produce �Putnam competition cham-
pions� 5 who secure spots at top national universities, but to train
future mathematicians, physicists, and engineers who will have to
deal with mathematical problems and will need to apply sound
methodologies.

It is also worth noting that some 11th grade math cramming ma-
nuals include exercises that seem more appropriate for 6th grade
level. Students who rely solely on these books and related courses
might get good grades throughout their secondary schooling. Ho-
wever, they will struggle with college admissions and, if they get
into college, with college studies, because, despite criticisms of an
overemphasis on memorizing tricks rather than developing metho-
dology, earning a college degree in mathematics requires more e�ort
and a deeper understanding than what these 11th grade textbooks,
often �lled with middle school-level exercises, can provide. 6

5. Although the author did earn a third prize at the International Mathe-
matical Olympiad in Hungary many years ago.

6. For example : consider an arithmetic sequence un whose step is equal
to 7. Starting from u0, a positive number less than 10, we reach un = 61.
What is u0 ? And for which index n do we reach un = 61 ?

https://www.amazon.com/dp/2958738523
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To take a break from studying the Fibonacci sequence, let's re-
visit the Basel problem, see formula (3.10).

This time, we'll let a computer do the work for us, and reveal
some insights. In other words, we will engage in what is called
�experimental mathematics�.

Exercise 3.5 : The sequence of partial sums of the inverses
of the squares of positive integers is clearly increasing. We are
told that it has a limit, which is π2/6. We are not going to
prove this. 7

Our aim is to see if it converges reasonably quickly.

Up to what index n must we go so that the square root of
six times the partial sum

1 +
1

22
+

1

32
+ ...+

1

n2
(3.17)

exceeds the number 3.14 ?

Hint : You should �nd that we must go up to nearly n = 600.

Thales' theorem revisited and extended to irrational

numbers

To conclude this lesson devoted to a �rst visit of sequences, series,
and convergence, at work in simple situations, let us prove Thales'
theorem for an irrational ratio.

Consider a triangle ABC. We recall that we proved Thales' theo-
rem when we place a point E on AB at a distance p/q times AB
from A, and a point F on AC at a distance p/q times AC from A,
see �gure 3.3.

Then the segment EF is parallel to BC and of length equal to
p/q times BC.

But we have not demonstrated Thales' theorem when instead
of a rational number p/q, we make the same construction with a
positive irrational number λ.

7. To show that the limit is π2/6 is not easy � particularly if we want to be
rigorous. However to show that the sequence has a limit is easy.

With a little elementary calculus, which we will learn next year, it is easy
to show that the sequence (3.17) is bounded. Therefore it has a limit. On the
other hand, as said, showing that this limit is π2/6 is more di�cult.

https://tinyurl.com/y3myspw9
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Figure 3.3 : Thales' theorem when using a rational number to split AB

and AC. (In the �gure we used 1/3.)

What happens if we use a split with an irrational number λ ?

Figure 3.4 : Study of the case where AE/AB = AF/AC = λ, and lambda

is irrational.

We can frame λ as precisely as we want between p/q and (p+1)/q.
This allows us to position two points E1 and E2 framing E on the
segment AB. We do the same with F1 and F2 on the segment AC.

The points E1, E2, F1 and F2 de�ne a horizontal band. The
segment EF (which a priori could be slightly inclined) is contained
in this strip. Given that we can take a strip as thin as we want,
this is only possible if EF is horizontal.

https://www.amazon.com/dp/2958738523
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Analogously, EF has a length intermediate between that of E1F1

and that of E2F2. We can make these two lengths as close as we
want to λ times BC. So the only possible length for EF is λ times
BC.

Q.E.D.

Thales' theorem was obvious for a rational partition of AB and
AC. Now we have extended it to irrational partitions. This shows
the power of reasoning using the concept of convergence.

Reading suggestions

FLEGG Graham, Numbers : Their History and Meaning, Dover,
2013.

https://tinyurl.com/y3myspw9




Lesson 4 :

Continuous functions

To understand the importance of continuous functions in mathe-
matics and physics, it is useful to brie�y review the history of the
development of mathematics. This history can be divided into four
periods :

1. From the Egyptians and Babylonians to Euclid (-300) An-

cient mathematics : accumulation of facts and rules in ele-
mentary geometry and arithmetic, lacking organization or a
broader perspective. However, by the end of this period, Eu-
clid wrote his in�uential work, Elements, which presented
geometry in an axiomatic form. The mathematics taught in
primary school and used in everyday life largely originates
from this era.

2. From Euclid to Descartes (1596, 1650) : mathematics of con-

stant quantities. In this long period, we can distinguish seve-
ral parts :

� First, at the end of Greek Antiquity, the marvelous school
of Alexandria (from -300 to +400) which included, in ad-
dition to Euclid, Eratosthenes (c. -276, c. -194), Hero (�rst
century AD), Diophantus, Pappus, Hypatia, etc.

� Eastern mathematics (of Indians, Persians, Arabs) : nu-
meration, trigonometry, and algebra. This period spans
from 500 to 1500 CE. Mathematics from this era, along
with much knowledge of mathematics from Antiquity, was
transmitted to Europe by the Arabs. This transfer played
a signi�cant role in Europe's intellectual renaissance, which
had waned in scienti�c and most cultural pursuits af-
ter the fall of the Western Roman Empire. The Catho-
lic Church had taken over from the Greco-Roman world
in preserving spiritual activities, but it was not oriented
towards the sciences. This is a vast and fascinating story
that cannot be described in a few lines
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� Beginning of European mathematics : signi�cant progress
in algebra by the Italians in the 16th century, the disco-
very of complex numbers, and the mathematics of cosmo-
graphy � which originally began at the start of the Chris-
tian era with Claudius Ptolemy (c. +100, c. +168) but
underwent a revolution with Nicolas Copernicus (1473,
1543) and then Johannes Kepler (1571, 1630) � as well
as advances in cartography, Descartes' analytic geometry,
and more.

3. From Descartes to the beginning of the 19th century : mathe-

matics of variable quantities. This period marks the triumph
of European mathematics, characterized by the introduction
of functions, di�erential and integral calculus, and the ap-
plication of mathematics to physics with remarkable success,
including �elds like �uid mechanics and electromagnetism.
Once again, it would require volumes to be described fully.

4. From the beginning of the 19th century to the present day :
contemporary mathematics. They begin with a deepening and
consolidation of the basic concepts in di�erential and inte-
gral calculus. It is the work of our friend Cauchy who de�-
ned clearly, as we have seen, the notions of convergence and
limit. 8 Then came non-Euclidean geometry, set theory, the
theory of algebraic structures, and other areas, which the rea-
der will discover if they continue to study math in college. 9

Functions are the fundamental concept of the period of mathe-
matics of variable quantity. Among functions, continuous functions
� and in particular di�erentiable ones, which we will see in the next
lesson � are the most important.

It is important to understand that the idea of doing mathematics
with functions represents a considerable conceptual leap compared
to previous mathematics. From the Greeks until the end of the
16th century in Europe, mathematics dealt with �concrete� things.
These were sometimes explicitly stated in the works of mathema-
ticians, but they were always present implicitly : they were num-

8. Cauchy would already deserve his place in the pantheon of mathema-
ticians for this work, but his most important works concern functions and
complex analysis that he initially developed essentially alone.

9. The three-volume work, by Aleksandrov, Kolmogorov and Lavrent'ev,
Mathematics, Dover, 1999, o�ers a clear, pedagogical, e�ective introduction,
free from any pedantry (and avoiding �modern math� like the plague), to the
mathematics of periods 3 and 4 above.

https://www.amazon.com/dp/2958738523
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bers, constant quantities (possibly unknown that had to be found),
points and geometric �gures.

The idea that a function, that is to say a relation between two
variables, could be a mathematical entity in itself, which could be
called f , and on which one could work, was foreign to the Greek
mind. The idea that an entire function could be the unknown in a
riddle was inconceivable before the 18th century.

The history of the emergence of the concept of function in the
17th century is very interesting. Let us mention some important
milestones.

We have seen that mathematicians were already interested in
equations in early Antiquity. In the second millennium BC, the
Babylonians were posing problems like this one (put in modern
form) 10 : �nd the number x such that x2+x = 3/4. And they gave
the answer � with its formula ! They considered that there was only
one solution, because they eliminated the negative one.

Exercise 4.1 : Solve algebraically the equation

x2 + x =
3

4
(4.1)

Draw the curve y = x2 + x− 3/4.

We have seen that Al-Khwarizmi, in the 9th century of our era,
invented algebra to solve all kinds of equations.

The Italians of the 16th century (Del Ferro, Tartaglia, Ferrari)
discovered general solutions for polynomial equations of the third
and fourth degrees in one variable.

Exercise 4.2 : Solve geometrically the equation

x3 + x2 =
3

4
(4.2)

How many real solutions are there ?

Explain why a third-degree polynomial equation with one
unknown always has at least one real solution.

10. See lesson 4 of our book, High school mathematics : 10th grade.

https://tinyurl.com/y3myspw9
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At the end of the 16th century, mathematicians were also inter-
ested in equations involving two unknowns, x and y. They knew
that in general to determine the value of each unknown, we needed
to have two equations, that is, two constraints.

For example, if I tell you that Judy is twice as old as Emily, and
in three years she will be only one and a half times as old as Emily,
you can determine Judy's age and Emily's age today.

Exercise 4.3 : What are Judy and Emily's ages today ?

But if I simply tell you that in one year Robert will be the same
age as the square of Cecilia's age then, and that in this problem we
are not considering whole numbers of years, but that the unknowns
are real numbers measuring durations, you cannot determine Ro-
bert's age and Cecilia's age. If we call y Robert's age today, and x
Cecilia's age, we can transform our problem into the equation

(x+ 1)2 = y + 1 (4.3)

Since we cannot solve this equation, until around 1620 mathe-
maticians simply considered that it was uninteresting.

René Descartes took a di�erent view of the question. He said

� No, no, equation (4.3) is very interesting ! Of course, we can-
not �solve� it, that is, we cannot �nd x and y. But equation (4.3)
establishes a relation between x and y. 11

Descartes, as is known, created Cartesian coordinate systems
and analytic geometry. For Cartesian coordinate systems, he was
inspired by cartographers who had already been locating points on
the spherical globe using latitude and longitude for a century.

When it comes to �drawing a curve�, predecessors to Descartes
can also be found. Oresme (c. 1320, 1382) plotted the speed of a
horse rider against time on a two-dimensional graph, with speed
as the ordinate and time as the abscissa. Oresme even pointed out
that the area under the curve between two time points represented
the distance covered by the rider. More on this in lesson 5.

Other mathematicians, such as Pierre de Fermat (c. 1605, 1665),
contributed to the birth of analytic geometry. But it was Descartes
who really showed and began to exploit its full power.

11. The term function was introduced a little later by Gottfried Leibniz. And
it has a slightly less general meaning than �relation�.

https://www.amazon.com/dp/2958738523
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Descartes thus �represented� the relation (4.3) as this :

Figure 4.1 : Graph of the relation y = (x+ 1)2 − 1.

Furthermore Descartes explained that algebraic problems could
be transformed into geometric problems, and vice versa.

Exercise 4.4 : Solve the following problem geometrically.
Find the values of x and y satisfying the two equations :

(x+ 1)2 = y + 1

x+ 4 =
2

3
y

(4.4)

Relations where each x corresponds to a single y are called func-
tions. But the concept of a relation as introduced by Descartes is
broader.

https://tinyurl.com/y3myspw9
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Exercise 4.5 : Plot the locus of all the points in the plane
whose coordinates (x, y) satisfy the constraint :

2x2 + y2 − xy + 3x+ y − 7 = 0 (4.5)

To which family does this curve belong ?

Explain why it is not the graph of a function.

Hint : For a relation to qualify as a function, to each value
of the independent variable x there must be associated only
one value of the dependent variable y.

Why the concept of function became fundamental in the

17th century

The history of the world explains it. After the disastrous scho-
lasticism of the 13th century, Europe began to think anew. And
it did so in a new way : by observing nature before attempting to
explain it. 12

A taste for objective knowledge 13 reappeared, which had existed
during the time of the pre-Socratics, but had then vanished for two
thousand years, giving way to considerations or peremptory a�r-
mations about man, the reason for his existence, his preeminence
in the universe, the way God wanted us to live on earth before the
real life in the Hereafter, etc.

After a few intrepid travelers like William of Rubruck (c. 1220,
c. 1290), Marco Polo (1254, 1324) or Ibn Battuta (1304, 1368),
in the 15th century the Portuguese embarked on distant maritime
expeditions along the coasts of West Africa. At the end of the 15th
century, people had gone to America, circumnavigated Africa and
reached India by sea. And Europe began to dominate the world. 14

12. This avoided thinkers of Antiquity, such as Aristotle (-384, -322) who
explained that the heaviest objects fell the fastest, that an object had to be
constantly pushed to move forward, that the stars moved in circles in the sky,
that space could be �lled with regular tetrahedra just as the plane could be
tiled with equilateral triangles, etc.
13. In epistemology, the concept of �objective knowledge� is very slippery.

But we are not going to address the issue here.
14. Before the great European navigators, the Chinese had already set up

expeditions in the Indian Ocean, led by Admiral Zheng He (1371, 1433), with
much larger ships and much larger squadrons than those of Christopher Co-
lumbus or Vasco da Gama. But the fourth emperor of the Ming dynasty had
abruptly put an end to them.

https://www.amazon.com/dp/2958738523


O�ered by Eagle's Beak Press 49

Navigation on ocean going vessels required a better understan-
ding of the movement of the stars, because, when one was far from
the coast, they were the only points available to �nd one's bearings
at sea (and also in the Sahara desert). Thus the mathematicians
and scientists of the 16th century were called upon. They develo-
ped new tools in geometry in space and on the sphere. They also
understood the importance of functions of time, that is, where the
independent variable is time, and the dependent variable or va-
riables describe a position somewhere.

In the early 17th century, Kepler formulated his three laws des-
cribing the motion of the planets around the Sun. Galileo (1564,
1642) studied the motion of a body in free fall, or sliding or rolling
on an inclined plane (so that it does not go too fast). He discove-
red among other things that all bodies on which air resistance is
negligible fall at the same speed. 15 Finally, Newton developed the
theory of dynamics and the theory of universal gravitation, which
allowed him to reach via pure mathematical calculation the laws
that Kepler had found by the careful examination of astronomical
data collected by Tycho Brahe (1546, 1601)

In short, the study of functions was launched. And they very
quickly became a fundamental tool of mathematics.

Continuous functions

The vast majority of functions that mathematicians and physi-
cists work with are continuous, that is to say, one can draw their
graph without lifting the pencil from the sheet of paper.

For a long time, this de�nition was su�cient. But at the be-
ginning of the 19th century, this was no longer the case. It was
necessary to give a more precise de�nition of what is meant by a
continuous function. People like the German-Italian-Czech mathe-
matician Bernard Bolzano (1781, 1848) had begun to understand
that the line of numbers was more complicated than it seemed. It
had been known since the Greeks that there were irrational num-
bers, but a more precise de�nition of irrational numbers was needed
than �these are the numbers that are not fractions�.

Generally speaking, a de�nition that says what something is not
is a bit insu�cient to understand what the thing is :-)

15. This is easy to explain, because a heavy body that breaks into two
in the air does not suddenly slow down. But it is even better to verify it
experimentally. See the joint fall of a feather and a hammer on the Moon
https://www.youtube.com/watch?v=KDp1tiUsZw8

https://tinyurl.com/y3myspw9
https://www.youtube.com/watch?v=KDp1tiUsZw8
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It is Cauchy who provided a workable de�nition of what a conti-
nuous function is. And he did so, in a way that is a bit surprising :
not by describing the overall behavior of the function on a segment,
but by specifying how it should behave at each point of the segment
on which it is continuous. In other words, continuity is de�ned �rst
at a point.

De�nition : A function f from R to R is continuous at a given

point c 16, if for any sequence of numbers xn that converges to c,
the sequence of numbers f(xn) converges to f(c).

Then, by de�nition too, a function f is continuous on a segment

[a, b] if it is continuous at all points of [a, b].

It is intuitively clear that we can draw the graph of such a func-
tion on the interval [a, b] without lifting the pencil. However, if the
function makes a sudden jump in the ordinate from one value to
another at a certain abscissa d, the pencil will need to be lifted.

Figure 4.2 : Continuous function on the segment [a, b], except at the

point d. Note that we have not given on this graph the value of the

function at the abscissa d. And whether the segment a b is closed or

open is not important for the moment (it will be later).

These observations, however, remain in the realm of intuition.
We will make them more rigorous � which will lead us once again,
and slightly bending our promise of the previous lesson, to brie�y
discuss topology. We will also present at the end of the lesson some
examples of teratological functions that mathematicians keep on
their shelves like specimens in jars of formalin.

16. That is, at a given real number c which the independent variable can
take, on the x-axis, in the domain of de�nition of the function.
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Examples

Example 1 : The equation f(x) = ax + b de�nes a continuous
function.

Indeed, if xn is a sequence of numbers converging to l, the cor-
responding sequence of f(xn) tends to al + b.

Let us give a thorough proof with the help of a little �epsilonite�.
We want to show that

∀ϵ, ∃N such that n > N =⇒ |f(xn)− f(l)| < ϵ

We shall use the fact that xn converges to l. This translates to

∀η, ∃M such that n > M =⇒ |xn − l| < η

Choose η =
ϵ

|a|
. Then by going far enough with the index n, we

are sure that we will have, for all the n greater than a given M
(dependent on η),

|xn − l| < ϵ

|a|
(4.6)

This inequality is equivalent to

|a| |xn − l| < ϵ

or
|axn − al| < ϵ (4.7)

In other words, we have just demonstrated that whatever positive
number ϵ we pick, however small it may be, by going far enough in
the indexes, we will have f(xn) at a distance of f(l) smaller than ϵ.
With the symbolism of epsilonite, this is written

∀ϵ, ∃M such that n > M =⇒ |f(xn)− f(l)| < ϵ

Q.E.D.

Note that we have just shown that a straight line is a continuous
curve. But this last assertion is informal, while our demonstration
with ϵ and η is rigorous.

https://tinyurl.com/y3myspw9
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Example 2 : The equation f(x) = ax2+bx+c de�nes a continuous
function.

We want to show that if xn is a sequence of numbers tending to
l, then the corresponding sequence of f(xn) tends to al2 + bl + c.

We will again start from the fact that

lim
n→+∞

xn = l (4.8)

That is to say : ∀η, ∃M such that n > M =⇒ |xn − l| < η

There are several possible paths to arrive at

∀ϵ, ∃N such that n > N =⇒ |(ax2
n + bxn + c)− (al2 + bl+ c)| < η

or, more simply,

∀ϵ, ∃N such that n > N =⇒ |ax2
n + bxn − al2 + bl| < η

To begin, note that

|ax2
n + bxn − al2 + bl| ≤ |ax2

n − al2|+ |bxn − bl| (4.9)

We already know that by going far enough in n, the second term
on the right-hand side can be made as small as we want. It is
therefore su�cient to show that this is also true for |ax2

n − al2|.
Let us write xn in the form xn = l + ηn. Then

x2
n = l2 + 2lηn + η2n (4.10)

Since l is a given real number (it is not an �in�nite number�),
by going far enough with the index n we can make the di�erence
between x2

n and l2 as small as we want in absolute value. And this
is also true for ax2

n.

Once ϵ is chosen, let's take an index n large enough so that on the
one hand |bxn − bl| < ϵ/2 and on the other hand |ax2

n − al2| < ϵ/2.
We know that this is possible for n > M large enough. Then the
right-hand side of (4.9) will be smaller than ϵ.

That completes the demonstration of

lim
n→+∞

xn = l =⇒ lim
n→+∞

ax2
n + bx+ c = al2 + bl + c

Q.E.D

This time, we have just shown that a parabola is a continuous
curve.

https://www.amazon.com/dp/2958738523
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Exercise 4.5 : Without going into all the epsilonitis, explain
the key points of the demonstration that a polynomial function
of degree n is a continuous function.

We can similarly prove that the trigonometric functions, sinx
and cosx are continuous on all R. We recall that the second is
simply the �rst shifted by π/2 to the left, that is

cosx = sin(x+ π/2)

Figure 4.3 : Sine function.

Figure 4.4 : Cosine function.

The rigorous demonstration of the continuity of the function
sinx, with epsilonite, is based on the geometric de�nition of the
sine of an angle. Without being complicated, it would not provide
any interesting insight, and we are not going to do it. Let us simply
observe that both graphs can be drawn without lifting the pen.

The case of the function tanx presents a particularity. The tan-
gent function is continuous on all R except at the points

... −3π

2
, −π

2
,

π

2
,

3π

2
,

5π

2
, ...
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Figure 4.5 : Tangent function.

When the independent variable x (i.e. the angle x) approaches
π/2 its tangent becomes in�nite, because

tanx =
sinx

cosx
(4.11)

And, as we know, this formula is only valid if cosx ̸= 0. If you
need to refresh your knowledge of trigonometric functions, you can
refer to our book High school mathematics : 10th grade, Eagle's
Beak Press, fall 2024.

In mathematics a little more advanced than 11th grade, we no
longer de�ne trigonometric functions using geometric constructions,
but using power series. Thus

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ ... (4.12)

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ ... (4.13)

The tangent function also has a power series, where the coe�-
cients have a slightly more complicated expression than formulas
(4.12) and (4.13).
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We can then demonstrate the continuity of the sine, cosine, and
tangent of x using the tool of power series. We can even calculate
the derivative functions easily � after examining the conditions
under which a power series can be di�erentiated term by term.
These topics will be covered later, in the next lesson and next
year.

In conclusion, most functions that mathematicians and physicists
work with are continuous everywhere, except at a few points, as
seen with the tangent function.

Intermediate Value Theorem

Theorem : Given a function f(x) that is continuous on a seg-

ment [a, b] of the real numbers, then if f(a) is negative and f(b)
is positive, there exists at least one point c located between a and b
such that f(c) = 0.

Intuitively this is obvious, see �gure 4.6.

Figure 4.6 : A continuous function on [a, b], negative at a and positive

at b necessarily intersects the x axis at at least one point c between a

and b.

But this is not a proof :-)

Proof of the intermediate value theorem :

Let f be a continuous on [a, b]. We start by noting that if f(d)
is strictly positive, then it is also true in a neighborhood (perhaps
very narrow, but nonzero) around d. This is also true to the left of
b and to the right of a.

https://tinyurl.com/y3myspw9
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Now consider the set of points x on the segment [a, b] where
f(x) < 0. Let's call it E. This set E is bounded above by b.

Then, by virtue of the fact that the set of real numbers, R , is
complete, the set E has a smallest upper bound. Let us call it c.

It is left to the reader to show that f(c) cannot have any value
other than zero.

Q.E.D.

The fact that we work in the set R of real numbers played a
fundamental role. If we were working only in the set Q of rationals,
our demonstration would collapse. And indeed, the intermediate
value theorem is not true in Q. This is again a consequence of the
fact that the rationals may be dense, yet they have holes. And the
curve in �gure 4.6 could slip through a hole in Q.
For example, on the segment [0, 2] in the set Q of rationals, the

function

f(x) = x2 − 2 (4.14)

does not satisfy the intermediate value theorem. Indeed, f(0) = −2,
f(2) = +2, and the function is continuous in Q, but there is no
rational number c such that f(c) = 0.

Hopefully this sheds more light on the topological di�erence bet-
ween Q and R, and why we need to be in the set R to work conve-
niently with continuous functions : we obviously want the interme-
diate value theorem to be true.

Functions with strange behaviors

I promised, to �nish, a little tour in the gallery of teratological
functions from R to R.
Here is a �rst one that is a little bizarre but not too much. It is

f(x) = x sin

(
1

x

)
(4.15)

It is de�ned for all real numbers except x = 0 and it is continuous
over the entire domain where it is de�ned.

Its graph is shown in �gure 4.7, taken from volume 1, chapter
II, of the three-volume book by Aleksandrov, Kolmogorov, and La-
vrent'ev mentioned in the suggested reading at the end of lesson 1.

https://www.amazon.com/dp/2958738523
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Figure 4.7 : Function y = x sin
(
1
x

)
. It is de�ned and continuous everyw-

here on the set of nonzero real numbers. It has the particularity that it

can be extended so that it is de�ned and continuous everywhere : add

f(0) = 0.

It can be extended by continuity, so that it is de�ned and conti-
nuous everywhere. We only need to assign the value 0 to f(0).

On the other hand, it is teratological in the sense that the slope
of its secant to the right and the slope of its secant to the left of
zero (we mean by this [f(x)−f(0)]/[x−0]) do not converge towards
numbers (even di�erent from each other), but do not cease to oscil-
late between two values. The secants play a role in the calculation
of the derivative function that we will study in the next lesson.

Chapter II of the book by Aleksandrov, Kolmogorov and La-
vrent'ev gives other (non-teratological) examples of continuous func-
tions, sometimes with points of discontinuity, as we did above in
the examples.

Here is a function that is clearly more teratological than the one
above. It is the function of Thomae. It is de�ned as follows :

� It takes the value 0 on all irrationals.

� It takes the value 1 for x = 0.

� And for any other rational x, let p/q be the irreducible frac-
tion representing x with q > 0, then the value of the Thomae
function at x is 1/q.

https://tinyurl.com/y3myspw9
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This function is continuous at all irrational points, and discon-
tinuous at all rational points. It cannot be continuous at rational
points (or numbers), because there are always irrationals as close
as one wants to any rational.

Suggested reading

DESCARTES René, Discours de la méthode, Leiden, Netherlands,
1637.

Numerous editions in French and English can be found on the
Net. This book is important primarily for two of its three an-
nexes : analytical geometry and optics.

KATZ Victor J., editor, The Mathematics of Egypt, Mesopotamia,
China, India, and Islam : A Sourcebook, Princeton University
Press, 2007.
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