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2 Large Language Models

1 Introduction
Hi everyone,

I wanted to make this video for a while. It is a comprehen-
sive, general audience introduction to large language models
like ChatGPT[1

What T hope to achieve in this video is to give you some
kind of mental model for thinking through what this tool is.
It is obviously magical and amazing in some respects: it’s
really good at some things, not very good at others. And
there are also a lot of sharp edges to be aware of.

So what is behind this text box ? (fig. 1)

@ @ CchatGPT 40 (e )

What can | help with?

Message ChatGPT

Figure 1: ChatGPT text box to enter a question, a text, a prompt,
an image, or anything to trigger an LLM response.

You can put anything in the box and press enter.
@ @ ChatGPT 40 & O

What are you?

@  rmyourintelligent assistant, here to help with your questions, projects, and ideas. Whether you

, or collaboration on 19 specific, let me know how |

Figure 2: ChatGPT 40 answer to the prompt "What are you ?".

'"While speaking Andrej Karpathy uses a large white board with
illustrations. It can be obtained using https://excalidraw.com/| and
opening the file https://lapasserelle.com/documents/karpathy.txt


https://excalidraw.com/
https://lapasserelle.com/documents/karpathy.txt

Deep Dive into LLMs like ChatGPT 3

But what should we be putting there, and what are these
words generated back? (fig. 2) How does this work. What
are you talking to, exactly?

I'm hoping to get at all those topics in this video. We’re go-
ing to go through the entire pipeline of how this stuff is built.
But T'll keep everything accessible to a general audience.

Let’s take a look first at how you build something like Chat-
GPT. Along the way, I'm going to talk about some of the
cognitive and psychological implications of these tools.

00:01:002

2 Pre-training data (internet)

Let’s build ChatGPT. There are going to be multiple stages
arranged sequentially.

The first stage is called the pre-training stage. And the first
step of the pre-training stage is to download and process the
internet. fig. 3.

Step 1: download and preprocess the internet
https:/huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1

URL Text Language Giopher
F‘.|tgrin5. Extroction F‘-[‘teﬁng F‘H’i&

m Custom (2] MinHash
Re‘!ﬂ ; Flters Filters dedup

The FineWeb Pipe_[ine

Figure 3: Step 1 of the pre-training stage: download and preprocess
the internet.

2We occasionally indicate the approximate timestamp in the video
that corresponds to our position in the text. At this point, we are at
00:01:00 in the video.
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To get a sense of what this looks like, I recommend looking
at https://huggingface.co/spaces/HuggingFaceFW/
blogpost-fineweb-vl

W blogpost-fineweb-v1 [ |

* FineWeb: decanting the web
for the finest text data at scale

Crafts

Scholarships,

Gaming
Politics

Film Festival .
Philosophical/Spiritual Introspection™

Theology

The * FineWeb dataset, clustered and annotated with educational score labels

Figure 4: huggingface.co main page.

This company, called Hugging Face, collected, created, and
curated this data set called Fineweb. They go into a lot of de-
tail in this blog post about how they constructed the Fineweb
data set.

All the major LLM providers, like OpenAl, Anthropic, and
Google, and so on, have something equivalent internally, some-
thing like the Fineweb data set.

What we are trying to achieve here is to get a ton of text
from the internet, from publicly available sources. We're try-
ing to have a huge quantity of very high-quality documents.
We also want a very large diversity of documents, because
we want to have a lot of knowledge inside these models. So
we want a large diversity of high-quality documents, and we
want many, many of them.

Achieving this is quite complicated, and as you can see here,
it takes multiple stages to do it well, figure 3.


https://huggingface.co/spaces/HuggingFaceFW/
blogpost-fineweb-v1
huggingface.co
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00:02:00
Let’s take a brief look at some of these stages.

For now, I'd just like to note that, for example, the Fineweb
data set — which is fairly representative of what you would
see in a production-grade application — actually ends up be-
ing only about 44 terabytes of disk space. You can get a USB
stick for a terabyte very easily, and I think this could almost
fit on a single hard drive nowadays. So this is not a huge
amount of data at the end of the day.

Even though the internet is very, very large, we're only
working with text. We’re also filtering it aggressively. So we
end up with about 44 terabytes in this example.

Let’s take a look at what this data looks like and what some
of these stages also are. The starting point for a lot of these
efforts, and something that contributes most of the data by
the end of it, is data from Common Crawl.

Common Crawl is an organization that has been scouring
the internet since 2007. As of 2024, Common Crawl has in-
dexed 2.7 billion web pages. They have all these crawlers
going around the internet. What you do is you start with a
few seed web pages and then you follow all the links. You
just keep following links and keep indexing all the informa-
tion. You end up with a ton of data from the internet over
time. This is usually the starting point for a lot of these
efforts.

Now, the Common Crawl data is quite raw and needs to
be filtered in many different ways. In figure 3, Hugging Face
shows a little bit the kind of processing that happens in these
stages.

The first step is called URL filtering. There are black-
lists of URLs or domains that you don’t want to be getting
data from. For instance the site https://dsi.ut-capitole.
fr/blacklists/ shows blacklisted sites. It usually includes
things like malware websites, spam websites, marketing web-
sites, racist websites, adult sites, and things like that. So


https://dsi.ut-capitole.fr/blacklists/
https://dsi.ut-capitole.fr/blacklists/
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there’s a ton of different types of websites that are just elim-
inated at this stage because we don’t want them in our data
set.

00:04:00

The second step is text extraction. You have to remember
that all these web pages are just raw HTML — the web pages
that are being saved by these crawlers. For instance, when
I go to inspect the Hugging Face blog page, this is what the
raw HTML actually looks like.

@ blogpost-fineweb-vi

Base filtering

Figure 5: HTML code example. In most cases, when viewing a
web page, you can inspect its HTML code by right-clicking on the
page and selecting "View page source’ from the context menu.

You'll notice that it’s got all this markup, like lists (<ul> ...
< /ul> with each item in <li> ... </li>), and stuff like that.
There’s also CSS code. This is computer code for constructing
the HTML web pages.

What we really need is just the visible text displayed by
the browser—not the underlying HTML code with its display
tags. We are interested only in "the meat", not "the bones"
or skeleton. We are interested in the main content of the
web page: navigation menus and other extraneous elements
are also discarded. So, extracting just the relevant content
from web pages requires substantial filtering and processing
to isolate high-quality, interesting and useful text.
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The next stage is language filtering. For example, Fineweb
filters, using a language classifier, try to guess what language
every single web page is in. Then they only keep web pages
that have more than, say, 65% English.

You can get a sense that this is a design decision that dif-
ferent companies can make for themselves: what fraction of
all different types of languages are we going to include in our
data set? Because if we filter out, for example, all of the
Spanish, then you might imagine that our model later will
not be very good at Spanish because it has just never seen
much data in that language.

Different companies can focus on multilingual performance
to different degrees. Fineweb is quite focused on English, and
their language model, if they end up training one later, will
be very good at English, but may not be very good at other
languages.

After language filtering, there are a few other filtering steps,
such as filtering duplication and things like that, finishing
with, for example, "PII" removal. This is personally identifi-
able information: addresses, Social Security numbers, and so
forth. You’d try to detect them, and you’d try to filter out
those kinds of web pages from the data set as well.

00:06:00

In summary, there are lots of stages in the pre-processing
(the filtering to get a clean corpus of high-quality texts), fig. 3.

I won’t go into full detail, but it is a fairly extensive part
of the pre-processing. And you end up with, for example, the
Fineweb data set.

When you click on it (and get to https://huggingface.
co/datasets/HuggingFaceFW/fineweb), you can see some
examples of what this actually ends up looking like, fig. 6.
Anyone can download this on the Hugging Face web page.


https://huggingface.co/datasets/HuggingFaceFW/fineweb
https://huggingface.co/datasets/HuggingFaceFW/fineweb
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Figure 6: Content of Fineweb.

Here are some examples of the final text that ends up in
the training set. Here is some article about tornadoes in 2012.
There were some tornadoes in 2012 and the article describes
what happened. The next article is something about... did
you know you have two little yellow nine-volt battery-sized
adrenal glands in your body? Okay, this is some kind of odd
medical article.

Just think of all these as web pages on the Internet, filtered
just for the text (the "meat") in various ways. And now we
have a ton of text — 44 terabytes of it.

00:07:00

We are now at the starting point for the next step of this
stage [the pre-training stage].

I wanted to give you an intuitive sense of where we are right
now. So I took the first 200 web pages her (bottom left of fig.
6) — and remember we have tons of them.

I just took all that text, and I put it all together, concate-
nated it, and this is what we end up with. We just get this,
fig. 7: raw text, raw internet text, and there’s a ton of it,
even in these 200 web pages.
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Figure 7: View of the beginning of 44 terabytes of text provided
by Fineweb.

I can continue zooming out here [looking from farther away|:
we just have this massive tapestry of text data. And this text
data has all these patterns.

What we want to do now is to start training neural networks
on this data, so the neural networks can internalize and model
how this text flows.

We have this giant "texture of text", and now we want to
get neural networks that mimic it. What we mean by that
will become clear as we go on.

00:07:47

3 Tokenization

Before we plug text into neural networks, we have to decide
how we’re going to represent this text and how we’re going to
feed it in our neural network.

The way our technology works for these neural nets is that
they expect a one-dimensional sequence of symbols. They
want a finite set of possible symbols. So we have to decide
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what the symbols are and then we have to represent our data
as a one-dimensional sequence of those symbolsﬂ

Right now we have a one-dimensional sequence of text,
fig. 7. It is a one-dimensional sequence even though, on my
monitor, of course, it’s laid out in a two-dimensional way.
But it goes from left to right and top to bottom. So it’s a
one-dimensional sequence of text.

This being computers, of course, there is an underlying rep-
resentation here. If I use UTF-8 encoding [of letters and other
characters| for the text, then I can get the raw bits that cor-
respond to this text in the computer, and that’s what it looks
like.

e o waanv X | & feewes:cecurtin . X | B WopecfaceWitos X | @ sttt X @ bum X @ bresta i+ v
« C  OFe [Usersiarpattyicodeivideonisbis. it * O & a
| 03111100010101 1001 10100101160 1010111011 1011010010110131001100111601060¢0010160110110160101161112011601110110116001 10010160 0111011110111001101110100601060600100
2011 1090800010 1011160201101 1110110100101 101 1909118910101 11001001 11021 10210026901 1001 1001101 111911 10010001 6000801 11010201 19106201 100101

011001 Hosiesiol st 1311001001006900011000108110801011101690110

1100600100060

111600111310001 £081000100000001 1

el 1elO 118 LILAGRIOL3 100 O 16010001000)10171101101 110100111011 1010000100631 1400110110000101110010811001016010

1LAONLIOLLE 1011091010010 111010101001 100001011011 100110 10MI0TIONIOIOLIOTIONNION LI ION OLAOT1010L
mmmummm 11611060018111¢0100

0OH9N111001001 10019101100 fitet 1ummumnmmmxmlmummuumnmmux

1otegieniieieere Lovisetenniieeliiotioeiolioleeseieseareiiontinionii

101 h0eNaI 1011 18110111101 101111011 EDT0CoRTEORORONTBENI0O1O1E01 01001 1010106t0101001110010101 000160106001 600001001DLORON10ER111010601010100131001000

Tl

3t
109 1mmuom|mm|mmmnmummmumn»mmmmcnmmmunmmunmnnmmlmmmmmlmmom 1091
3 L1010tenteoteOTIoI1 sresedt 101000010111009 10000001 0309010110111001100180001 03090901 0001801 1911100318010101110111
Haenorasente e 20010000001 1 0110100101101 31001 1001110111 011081011 10001 0RONCH101000¢0116110001 10010161 106001 1

109!
e eet
o101 10810101314010001 110100101 110001 101310011311 0001016031

Siioetioeisteotototontiisain 116
slsesielieetelotetenty 10912000003 13101
xnummu:wwummumnuumw: catoe:

umxmnmunmummmmmm
Sidetor0i1iensertoeiet
0210006901 1

1 o1t
1 1e0tote; £06060111000101 10000 0616110816010}

010110131101 1013100111691 100101110101 0FGREA10016210010080001 110111011011 1101101110013 10100R 101611 110101011108110} 1801
0111010000100000011000910110911101 10000101 19100101 10111009101 1100010000001001 091001 600001 11091801 10010101 10030101101 10001101 19091311091001 0069001 10010001 1913110100000

Figure 8: Text of figure 7 shown in UTF-8 encoding. It is now a
(much longer) sequence of zeros and ones.

In figure 7, the first line reads:
|Viewing Single Post From: Spoilers for the Week of. ..

The very first vertical bar has a UTF-8 encoding. In hexa-
decimal, its UTF-8 byte is 7c. In binary, this corresponds to
the first eight bits shown at the top of figure 8: 01111100.

30f course, we could represent the text using just the 26 letters of
the alphabet along with a few punctuation marks. However, that’s not
how the vast amount of text — such as the excerpt shown in Figure 7
— will actually be encoded for neural network processing.
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Next, the letter V is encoded as 56 in hex and 01010110 in
binary.

The letter i is encoded as 69 in hex and 01101001 in binary.

Thus, the top line in figure 8 begins with:

011111000101011001101001...

What is this thing, in figure 8 7 It is the representation that
we are looking for, in a certain sense. We have exactly two
possible symbols: 0 and 1. And we have a very long sequence
of them. The 200 web pages correspond to a long sequence,
and the 44 terabytes to an even longer sequence.

When we select a fragment in our complete data set (of 44
terabytes), it is going to be a long sequence of symbols (at
this stage, of zeroes and ones). It turns out that this sequence
length is actually going to be a very finite and precious re-
source in our neural network.

Now, we actually don’t want extremely long sequences of
just two symbols. Instead, we want to trade off the symbol
size of this vocabulary, as we call it, and the resulting sequence
length. So we don’t want just two symbols and extremely
long sequences. We're going to use more symbols and shorter
sequences.

One naive way of compressing or decreasing the length of
our sequence here, fig. 8, is to consider some group of consec-
utive bits — for example, eight bits — and group them into
a single, what’s called a byte.

00:10:00

Because these bits are either on or off (i.e. 0 or 1), if we
take a group of eight of them, there turn out to be only 256
possible combinations [from 0 to 255 of how these bits could
be on or off. Therefore, we can represent this sequence as a
sequence of bytes instead, figure 9.

This sequence of bytes will be eight times shorter. But now
we have 256 possible symbols. FEuvery number here goes from
0 to 255.
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Figure 9: Text of figure 7 shown now using 256 different bytes (from
0 to 255). We should think of them as just 256 distinct symbols —
we could use 256 emojis to stress this pointEl

I really encourage you to think of these not as numbers
but as unique IDs or unique symbols. To stress this point,
we could even replace every one of 256 numbers (from 0 to
255) with a unique emoji. The reader can imagine a long text
written with an "alphabet" of 256 emojis. You can think of
it that way.

In production, for state-of-the-art large language models,
you actually want to go even beyond this. You want to con-
tinue to shrink the length of the sequence—because again, it
is a precious resource — in return for more symbols in your

vocabulary.

The way this is done is by running what’s called the byte
pair encoding algorithm. The way this works is we're looking
for consecutive bytes or symbols that are very common.

For example, it turns out that the sequence 116 followed
by 32 is quite common and occurs very frequently. So we’re

“*Similarly, in Sudoku, the digits 1 through 9 are used purely as
nine distinct symbols, without any arithmetic significance. For further
discussion, see André Cabannes, Middle School Mathematics, Volume 1:
6th and 7th Grades, Eagle’s Beak Press, 2024, p. 25.
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going to group this pair into a new symbol. We're going to
mint a symbol with an ID 256@ and we’re going to rewrite
every single pair 116-32 with this new symbol. And then we
can iterate this algorithm as many times as we wish. FEach
time when we mint a new symbol, we’re decreasing the length
and increasing the size of the collection of symbols.

In practice, it turns out that a pretty good setting for the
size of the basic vocabulary is about 100,000 possible symbols.
In particular, GPT-4 uses 100,277 symbols.

This process of converting raw text into these symbols, or
as we call them tokens, is the process called tokenization.

00:12:10

Let’s now take a look at how GPT-4 performs tokenization
converting from text to tokens, and from tokens back to text,
and what this actually looks like.

One website I like to use to explore these token represen-
tations is called Tiktokenizer (https://www.tiktokenizer.
app/).

Tiktokenizer o
System X
User X
Open-Seurce Medels
OpenAl Encodings
Show whitespace
dabd Disgram (o]

Figure 10: Tiktokenizer. Selection of the encoding on the right.

5Because that’s the next available ID.


https://www.tiktokenizer.app/
https://www.tiktokenizer.app/
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Go to the dropdown menu and select “CL100K _base,” which
is the tokenizer for the GPT-4 base model. On the left, you
can enter text, and the tool shows you how the text is tok-
enized. For example, if you type “hello world”, it will be split
into exactly two tokens: the token “hello”, which has the ID
15339, and the token “ world” (including the space in front),
which has the ID 1917, figure 11.

Tiktokenizer oo buse

hetlo world Token count
2 x

hello world

15339, 1917

Show whitespace

Figure 11: Encoding of "hello world" using CL100K _base.

Now, if I join the two words and write "helloworld", for
example, I'm going to get two tokens again, but it’s the token
‘b’ (ID 71) followed by ‘elloworld’ without the ‘h’ (ID 96392).
If T put in two spaces between “hello” and “world,” it’s yet a
different tokenization; there’s a new token, 220. The sequence
of tokens becomes 15339, 220, 1917

You can play around with this and see what happens. Also,
keep in mind this is case sensitive — if it’s a capital “H,” you’ll

SPay attention to the fact that 220 is the token for one space alone,
and 1917, as we saw, is the token for " world" (with a space in front).
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get something else. Or if it’s “HELLO WORLD?”, this ends
up being the three tokens 51812, 1623, 51991, corresponding
to "HEL", "LO", " WORLD". You can play with this and
get an intuitive sense of how tokens and tokenization work.

We shall come back to tokenization later in the video. For
now, I just wanted to show you the website https://www.
tiktokenizer.app/, what this text entered in the box on
the left, fig. 11, becomes once processed.

For example, if I take one line from fig. 7, this is how GPT-4
will see it.

Tiktokenizer

Tokenization visualization tool for GPT, Llama, Qwen and other large language models

<100k base

he Uiesk of February Token count
it

62

2013, 09:58

Dot care abou really, but hoping

|Viewing Single Post From: Spoilers for the Week of Februar
y 11th|\n|Lil|Feb 1 2613, @9:58 AM|\nDon't care about Chlo
e/Taniel/Jen-Jen. Don't care about Sami, really, but hoping
that we

91, 860, 287, 11579, 3962, 5659, 25, 57049, 28257, 369, 27
9, 10563, 315, 7552, 220, 806, 339, 23813, 77, 91, 43, 321,
91, 41691, 220, 16, 220, 679, 18, 11, 220, 2545, 25, 2970,
6912, 23813, 77, 8161, 956, 2512, 922, 60470, 17146, 12315,
32801, 268, 12278, 268, 13, 4418, 956, 2512, 922, 8388, 72,
11, 2216, 11, 719, 16026, 430, 584

Show whitespace

Figure 12: Tokenization of first line of text in fig. 7.

The text will become a sequence of tokens of length 62. The
original is entered on the left. At the top right, you can see
how it is divided into chunks. The bottom right displays the
corresponding sequence of numbers (though you are encour-
aged to think of these as pure symbols).

As said, in ChatGPT 4 there are 100,277 possible symbols.

We now have a one-dimensional sequence of those symbols[]

"The last token is different from the video, because A. Karpathy cut
the text at "that w", whereas we cut it at "that we".


https://www.tiktokenizer.app/
https://www.tiktokenizer.app/
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00:14:30

What we have done is take the sequence of text that we
have in the data set, at the beginning of fig. 7, page 9, and
we have re-represented it, using our tokenizer, as a sequence
of tokens. This is what the whole text of fig. 7 looks like.

@0 @ O wWwmAn x W Teme X | & oo X @uimt X @uewn x @omt x| Qb X | @ewhtt x| Tamtes X 4+ 7
« G Ot [Usersfiarmpathyicodevideoriatotens tet * O 2

11579, 3962 e, 22T, 30, 19 S, IS, T2, 220, 06, 300, T3, I, 9, 43, I, S, 4, T, 16, 200, 609, 16, 43, e, 2845, 25,
3,

25, N
, 2812, 922, 6049, 17146, 12315, 32801, 268, ‘956, 35i2, 522, faae, T2, L2216 11, 719, 1ekds. don, 584"l

91, 50, 267,
2

o,
ein, 11, 205,

033,
i,
sa

is, m
3 . 1614, T, 13, nm, 3133, Ve, 159, 50, 553, 119, 535, 8395, 1, 30,

oy, 2, 292 29, 35, 330, 395, 313, 04159, 35, F0te DA, 1911, dobe, 1eme 1226, uu, "33 D74y 4w, un, m, 281, ibto, 4439, 684, 1,
s usx, m fodr, aee, m. 1510, 3, S5, ierr, 3, s, iesr. 1, ias, ; Tbis, 1045, av. 4

1963, a0, i3, 11099, sez, 7255, 77, dsie, ines, o, 0%, dasse, i, my no,

27, 4, Srar 453, T30,
4, 3T, 32w, Ti6, Su7h, 0357, N, 315, GeTiS, 14, I3, 13iLA, 335,97, 1001, o0, €36, 8677,
% 4 Siea, %, o162, 374, 509, L4es, 315, Ses, 15k, 0, isit, 430, 1071, 13, 133, a7, 1a &t , 477, 1486,

205, N1, 636, 49, 5012, 419, 15164, 399, 3195, 30, 3, 374, vm, o2, a9, 430, 1564,
I B, STV2 AT FOAT ISTS. 12700, 473, 10k, STABN, 5157, 9363, 4874, 9543, kb, 109
1 11204, BS26, 2419, 1875, 3536, 226, Bé10e, den, 17135, siau, doe, siee,
) 4

1, 34578, 784, 318, 21881, ms, i, m.
793, 9, 1642, 493, 48, 7

1 1, 430, N .
597, 311, 7293, A7, nn. zm. un a2, s, 16943, '37819, 0 L 9, 6113, a3,
% a1, 658, 3% % D LA oS - nu, .1, I, 10w, 4k, 3, 239, 17, 7 .75, B, M. 13, 2, 1w, e, Sasei,
adls, 147, S04, TS, o4 L 83542, 9572, 13, 23848, 02 63371, 32388, 315, 26211, 16298, 1734,
;37 141, 49, 17 zu m w, . 11293, sm. )ls. D, 5. wz u, um

351 Do, i, nsu, mv Sioea, 12175, 1333,
Dhsk, 15, 3ht, aweos. sasas, s, mn mu )u, sms 020, 356 174, 16290, 2374, 443, 31249,

L 2199, 3
131, 8 34, S3ax 3869, i atee, m. $xie, s, 785, um 74, 2170, 431 L 23
229, 19919, " sek92, 7917, 433, “1eds, )u. . = nm. 99, 77,' 12, ies; 5, 52312, 11, 3064, 585, 578, 1id1, uu: 31, 1519, 083, A1,
12332, 323, 24T 174 W1, 1517 264 1333, 43252, 3083, 23, M9, m: 1517, 13, 2. esoe, 3197, 5, 93367, 1131, MA24, 6T941,
2 Ga136, SST83, 1255, 287, STA3, 3T, SA3is, ATITS, AeST. TV, 1, 3ere, OSE3, THiAS, Tiss, S 20007, 4, ads 23338, 27776, 26113, 1754, 1383,
5.

9572, 639! 3 Sas3, s, 3, m). e s, 13, 1
219, 27, 23, %2, 8, 301, 4.
11909, 565, 2312, 319, 193 735, 7856, 436, 40A37, B a. ¢ Es
ugr, 7, mn. Ao, 35358, S1ims 110, e, 98y Seut, 6439, ATSE, G218, $TSRG, 49, 139, STisks 368, 13, A, 048,
11975, Sivin, 0 3934, I35, 35, N30 TreA2s TN, ARy dakaD, Bins BoeD, T, 1135, TS0, AL, TN GATIe, 308, eO1EE, 3907, 04, Tesks 017, 2048, 438, 1979,

Figure 13: Tokenization of whole text shown in fig. 7E|

When we go back to the Fineweb data set, they mention
that it’s not only 44 terabytes of disk space, it’s also an ap-
proximately 15 trillion token sequence in the data set.

In figure 13, we’re seeing just some of the first tokens
maybe one or two or three, or a couple thousand tokens of
this data set — but there are 15 trillion to keep in mind.

And keep also in mind that all of these represent little
chunks of text; they’re like atoms in these sequences. The
numbers themselves don’t mean anything — they’re just unique
1Ds.

81t is not the same as figure 9, because in fig. 9 we simply trans-
formed fig. 8 with 256 symbols, whereas now we have tokenized the
original text using 100 277 symbols.
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00:15:15

4 Neural network 1/0

Now comes the fun part, that is the training of the neu-
ral network. This is where a lot of the heavy lifting happens
computationally — when you’re training neural networks.

In this step we model the statistical relationships of how
these tokens follow each other in the sequence.[ﬂ

We go into the data and take windows of tokens — we take
a window of tokens from this data, fairly randomly — and the
window length can range anywhere from zero tokens actually,
all the way up to some maximum size that we decide on.

In practice you might see a window of, say, 8000 tokens.

In principle, we can use arbitrary window lengths of to-
kens, but processing very long window sequences would be
extremely computationally expensive. Therefore we just de-
cide that 8000 is a good number, or 4000 or 16000, and we
crop it there.

In the example below, to keep things simple, I'm going to
take the first four tokens just to illustrate the technique. It
is the first four tokens of our text (fig. 7). They have IDs 91,
860, 287 and 11579.

The correspondence is this:

e 91 = "|" that is the vertical bar
e 860 = "View"
e 287 = "ing"

11579 = " Single", that is space followed by the word
Single

9We are going to model the relationship between a given token and
the collection of tokens that precede it. In it essence, it is very similar
to a regression in statistics where we figure out the best formula linking
a few independent variables x1, x2, ... =, and a dependent variable y,
when we have at our disposal a large set of observed pairs (X, yn)-
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sequence of e.g. 4 tokens

oo

!'I||I "VieW" !Iing" n Singl-ell

Figure 14: Sequence of four tokens. We want to predict the token
that comes next. Of course here we know which token it is (it
is the token 3962, see fig. 12 and 13, or better go yourself to
Tiktokenizer); that will help us find a good predictive function.

Our goal is to build a function that always predicts the
token that comes next, when we give it as an input a sequence
of preceding tokens.

Of course, in this case, we know that the next token is 3962.
Therefore, once we have found a functionm that performs well
across the entire data set during training, it should predict
3962 when given the preceding four tokens — 91, 860, 287,
and 11579 — as input.

These four tokens are called the context. We will feed them
into our neural network. They will be the input, and we ex-
pect the output, once our neural network is properly trained,
to be the correct token that we already know.

I'll go briefly, in a moment, into the details of what’s inside
the neural network. For now, it’s important to understand the
input and output of the neural net: the input is sequences of
tokens of variable length, anywhere between zero and some
maximum size, like 8,000; the output is a prediction for what
comes next.

Because our vocabulary has 100,277 possible tokens, the
neural network is going to output exactly that many numbers,

'0This step represents the most labor — and resource — intensive part
of the pre-training stage for our large language model.
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and each one corresponds to the probability of that token
coming next in the sequence. So it’s making guesses about
what comes next.

100,277 probabilities for next token

2 probability of 19438 (" Direction"): 4%
sequence of e.g. 4 tokens

neural network
e

"View" "ing" " Single"

1= probability of 11799 " Case": 2%

J\—\ probability of 3962 " Post": 3%

Figure 15: Each of the 100 277 tokens has a certain probability of
being the next one in the sequence.

Once the neural network has been properly trained, typ-
ically after several months of intensive computation it will,
for any input context, produce a probability for each of the
100,277 tokens to be the next token. Thus, it outputs a vector
of 100,277 positive numbers that sum to one, figure 15.

In the beginning of its training, the neural network is ran-
domly initialized. We’re going to see in a little while what
that means — but in truth it doesn’t concern us too much,
because I won’t spend much time on how the neural net is
built inside. But initially it’s a random transformation. So
these probabilities in the very beginning of the training are
also going to be kind of random.

In figure 15, T give three examples but keep in mind that
there’s ~ 100,000 numbers in the vertical vector. For in-
stance, the neural network says that the probability of the
next token be " Direction" is 4%; the probability that it be
the token 11799 (" Case") is 2%; and then the probability of
3962 (which is " Post") is 3%.

In fact, of course, we've sampled this window from our data
set, so we already know what comes next. We know that the
correct answer, that is what actually comes next in the data
set in the sequence is 3962.
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On the construction side of the neural net, we now have a
mathematical process — during the construction of the net-
work — for updating it, that is for tuning it. We use the data
set and train the neural net on a huge amount of trials where
we actually know what it should guess, to make it sharper
and sharper.

We'll go into a little more detail soon, but basically, we
know that we want this probability of 3% (corresponding to
token 3962) to be higher, and we want the probabilities for
all the other tokens to be lower.

We have a way of mathematically calculating how to adjust
and update the neural network — after each trial or batch of
trials — so that the correct answer receives a slightly higher

probability[]

In other words, if I update the neural network now, using
the fact that "|" "View" "ing" " Single" should lead to guess-
ing " Post", next time I feed this particular sequence of four
tokens into the neural network, it will be slightly adjusted
and will say: Okay, " Post" is maybe 4%, " Case" is now
maybe 1%, and " Direction" could become 2%, or something
like that.

So we have a way of nudging — or slightly updating — the
neural net to give a higher probability to the correct token
that comes next in the sequence.

Now, you have to remember that this process doesn’t only
happen for the fifth token in fig.15, with the four fed into the
network to predict this next one. It happens for all the tokens
in the entire data set — selecting a context and trying to guess
the token that comes next — at the same time.

In practice, we sample little windows — little batches of
windows — and at every single one of these tokens, we want to

"One can regard the neural network as a black box that receives
inputs and produces outputs. To guarantee satisfactory outputs, various
internal elements called parameters must be adjusted iteratively. This
adjustment process involves a very large number of trials. We will only
give a sketch of the mathematics, since this is not the subject of the
video. And to provide truly serious explanations (not just "Scientific
American" style), another three-hour video would be needed.
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adjust our neural network so that the probability of the right
token becomes slightly higher. This all happens in parallel,
in large batches of these tokens.

This is the process of training the neural network — it’s
a sequence of updating it so that its predictions match up
the statistics of what actually happens in your training set.
And its probabilities become consistent with the statistical
patterns of how these tokens follow each other in the data.

00:20:11

5 Neural network internals

Let’s now briefly look at the internals of these neural net-
works, just to give you a sense of what’s inside.

As I mentioned, we have inputs that are sequences of to-
kens: in this case, this is four input tokens, but it could be
anywhere from zero up to, say, 8000 tokens.

In principle this can be an infinite number of tokens, but it
would just be too computationally expensive to process an in-
finite number of tokens. So we just crop it at a certain length
and that becomes the maximum context length of that model.
These inputs x;’s are mixed up in a giant mathematical ex-
pression together with the parameters or the weights of the
neural network.

In fig. 16, I show an example with four tokens and six
parameters and their settings, but in practice, modern neural
networks have hundreds of thousands of possible tokens and
billions of parameters.

input sequence tokens x
anywhere from 1 to e.g. 8,000 tokens

parameters (/ "weights") w
usually billions of these

giant mathematical expression

—=> 100,277 numbers

https://bbycroft.net/lm

Figure 16: Input tokens, parameters, and math formula.
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At the outset of the construction of the neural network,
the parameters are set completely at random. With a ran-
dom setting of parameters, you might expect that the neural
network would make random predictions and it does: in the
beginning the network makes totally random predictions.

But through the process of iteratively updating the network
— we call that process training a neural network — the param-
eters get adjusted such that the outputs of our neural network
become consistent with the patterns seen in our training set.

You can think of these parameters as the knobs on a DJ set
or the faders on a sound mixing console. As you adjust these
knobs or faders, you obtain different predictions for every
possible input token sequence.

Training a neural network just means discovering a setting
of parameters that seems to be consistent with the statistics of
the training set[?]

00:22:00

Let me just give you an example of what this giant math-
ematical expression looks like just to give you a sense. And
modern networks are massive expressions with trillions of
terms probably. But let me just show you a simple exam-
ple here.

12More mathematically speaking:

1. We have a large number of sequences S; for which we know the
following token y;.

2. Each sequence S; is a collection of z;; (for example, 8000 z;).

3. We want to find a function f, reasonably easy to compute, which
for any input sequence S produces — or shows as likely — an output
y that is correct for all known pairs (S;, y;).

4. The function f will be a combination of the tokens in the sequence
with weights, which serve as the parameters of the function.

5. We will adjust these weights to satisfy the condition in point 3 as
well as possible.

6. This is done using mathematical minimization techniques, a well-
known one being the gradient descent along a cost function.
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It would look something like this, fig. 17. These are the
kinds of expressions — just to show you that it’s not very scary.

We have inputs x like x; x2 — in this example two inputs
x;’s — and they are combined with the weights of the network
wp, W1, Wa, W3,... Up to wio.

giant mathematical expression

1/(1 + exp(—=(wg = (1/(1 + exp(—(w) * ; + wo * 7» + W3)))) + wy __%
* (1/(1 + exp(—(ws * 21 + wg* 70 + w7))))
+ ws * (1/(1 + exp(—(wo * 21 + wig * 22 + w11)))) + wi2)))

Figure 17: Example of mathematical expressionpigl

This mixing is simple things like multiplication, addition,
exponentiation, division, etc.

It is the subject of neural network architecture research
to design effective mathematical expressions that have a lot
of kind of convenient characteristics. They are expressive,
they’re optimizable, they’re parallelizable, etc.

At the end of the day these are not complexr expressions.
They combine the inputs with the parameters to make pre-
dictions. And we’re optimizing the parameters of the neural
network so that the predictions come out consistent with the
training set.

Now I would like to show you an actual production-grade
example of what these neural networks look like. For that I
encourage you to go to this website that has a very nice visu-
alization of one of these networks: https://nano-gpt.com/
conversation/new (et aussi https://bbycroft.net/11lm).

This is what you will find on nano-gpt website:

130nce the network has been trained, all the parameters are fixed.
Although the exact number is confidential, reliable sources estimate that
ChatGPT-4 has approximately 1.8 trillion parameters.


https://nano-gpt.com/conversation/new
https://nano-gpt.com/conversation/new
https://bbycroft.net/llm
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nano-gpt
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=
m

-

é

—

Ratmy

——
-

E!]

Figure 18: NanoGPT.

This neural network, which is used in production settings,
has a special kind of structure. It belong to the class of net-
works called tmnsformersH And this particular one, as an

example, has roughly 85 000 parameters.

At the top of the model, we start with the input, which is

a sequence of tokens.

"The author consistently calls the NanoGPT a "Transformer" (or
“GPT” for Generative Pretrained Transformer), following the paper “At-
tention is All You Need” and the standard neural architecture used by

GPT-2 and GPT-3 models.
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Information flows (downward in the figure) through the
neural network, layer by layer, until it reaches the output. At
the output layer, we obtain values known as logits. By apply-
ing the softmax function to these logits, we convert them into
probabilities. They represent the model’s predictions for the
next token — it tells us which token is most likely to come
next in the sequence.

In the middle of the nano GPT transformer (fig. 18), there
is a sequence of transformations. All the intermediate val-
ues produced inside this "calculator" contribute to predicting
what comes next. dded into what is known as a distributed
representation. In other words, each possible token is repre-
sented in the neural network by a vector.

At the input level, we embed the tokens, and their cor-
responding values are propagated through the diagram. In
NanoGPT, for instance, we see three transformer blocks. Each
element within these blocks performs a straightforward math-
ematical operation — such as layer normalization, matrix
multiplication, or softmax.

Within each transformer block, information flows first through
the attention mechanism, then continues into the multi-layer
perceptron block, and so forth.All of the numbers produced
in these blocks are intermediate values in the overall compu-

tation 1]

These values can be thought of as analogous to the firing
rates of artificial neurons. However, it’s important not to
take the analogy too far, as these artificial neurons are much
simpler than the ones found in biological brains. Biological
neurons are highly complex, dynamic systems, capable of re-
taining memory and adapting to new information.

In contrast, in the expression of fig. 17, there is no notion

of memory; it’s just a fixed mathematical function mapping
input directly to output in a static, predictable manner.

'5Here we give popular science-type explanations that any interested
reader should definitely replace with a specialized book or video.
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So while these are very simple neurons compared to their
biological counterparts, you can still loosely think of them
as forming a synthetic piece of brain tissue, if that analogy
helps.

Ultimately, information flows through these layers of artifi-
cial neurons, step by step, until the model produces its final
predictions.

I don’t intend to dwell too much on the precise mathemati-
cal details of all these transformations. It is not the objective
of the video.

And honestly I don’t think it’s that important to get into
the heavy-duty math of neural networks.Eg]

What’s really important to understand is that this is a math-
ematical function. It is parameterized by some fixed set of
parameters—say, 85 000 of them. It’s a way of transforming
inputs into outputs. As we adjust the parameters, we get dif-
ferent kinds of predictions. We need to find a good setting for
these parameters so that the predictions match the patterns
seen in the training set.E]

So that’s the transformer.

'6YouTube chain 3BluelBrown of Grant Sanderson gives an example
that is reasonably easy to follow : https://www.youtube.com/watch?v=
aircAruvnKk.

It explains how a neural network is used to read handwritten digits.
It is essentially the system built by Yann LeCun (born 1960) with his
pioneering neural network for handwritten digit recognition — the first
practical convolutional neural network (CNN) — in 1989, while working
at AT&T Bell Laboratories. His collaborators included Léon Bottou,
Yoshua Bengio, and later Patrick Haffner.

Grant Sanderson, of 3BluelBrown, still rests here and there on vul-
garization instead of clear maths, nonetheless he usefully complements
Andrej Karpathy’s presentation.

'"We do this using a technique from mathematics called optimization:
we minimize a cost function using gradient descent.

A website recommended by Perplexity to understand the math is
https://devot.team/blog/how-to-make-an-ail


https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=aircAruvnKk
https://devot.team/blog/how-to-make-an-ai
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00:26:00

6 Inference

I've described the internals of the neural network and ex-
plained the training process. Now, I want to discuss one more
major stage of working with these networks—the stage called
inference.

In inference we generate new data from the model.

To do that we want to see what kind of patterns the model
has internalized in the parameters of its network.

To generate from the model is relatively straightforward.
We start with some tokens that are your prefix you want to
start with.

Say we want to start with the token 91. Well, we feed
it into the network. Remember that the network produces
probabilities.

It gives us this probability vector shown here:

to generate data, you can just predict one token at a time

)=

Figure 19: Probability vector (of next token) given token 91.

What we can do now is we can basically flip a biased coin@
we can sample (= randomly generate) a token based on this
probability distribution. The tokens that are given high prob-
ability by the model are more likely to be sampled when you
flip this biased coin. You can think of it that way.

18By "biased coin" the author doesn’t mean a random variable with
two possible outcomes. Think of a Wheel of Fortune with 100 277 pos-
sible outcomes, with probabilities given by the vector produced.
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So we sample from the distribution to get a single unique
token. For example token 860 comes next.

Now while 860 is a relatively likely token — given 91 before
it — it might not be the only possible token. There could
be many other tokens that could have been sample using the
probability vector shown in fig. 19. But we could see that
860 is a relatively likely token. And indeed in our training set
(fig. 13) 860 does follow 91.

Let’s continue the process. We saw that after 91 the model
gave us 860. We append it. And again we ask: what is
the next token, the third one now? We get 287. It is still
consistent with the data set.

Let’s sample one more time. Now we start from the se-
quence of three token (91, 860, 287). The model produces a
vector of probabilities for the fourth token. We sample from
that vector, and suppose we get 11579 (fig. 20).

to generate data, just predict one token at a time

probabilities

neural network M sample
91 = —> | 860
neural network 1 sample
91 860 287

neural network, 1 sample
91 860 287 11579

Figure 20: Starting from 91, we sampled 860, then 287, then 11579.

Let’s say we do it one more time, to get the fifth token. We
take those four (91, 860, 287, 11579). We ask the model what
is the vector of probabilities for fifth token. We sample and
get, say, 13659.

This is not actually 3962, that is this is not the fifth token
in our training data set. This token 13659 is the token "
Article" instead.
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Our generative process, starting from 91 (the vertical bar),
has produced

|Viewing Single Article

Thus we didn’t exactly reproduce the sequence that we saw
in the training data, which was

|Viewing Single Post

Go back to figure 12, page 15, if necessary to check what
was the tokenization of the training data set.

Keep in mind that these systems are stochastic.

We're sampling. That is we are picking the next token
using a random procedure — what I call "flipping a coin" in a
generalized sense.

Sometimes we luck out and reproduce exactly the next
small chunk of text in the training set. But sometimes we’re
getting a token that is not verbatim part of any of the docu-
ments in the training data.

So we're going to get some sort of remixes of the data that
we had in the training, because at every step of the way we
can sample and get a slightly different token.

And then once that new token makes it in, if you sample
the next one and so on, you very quickly start to generate
token streams that are very different from the token streams
that occur in the training documents.

Statistically they will have similar properties but they are
not identical to your training data. They’re "inspired by" the
training data. And thus, in the example that we constructed,
we got a slightly different sequence. And why would we get
" Article"? You might imagine that " Article" is a relatively
likely token in the context of

|Viewing Single
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Tiktokenizer 110t base

|Viewing Single Article Tokes count

|Viewing Single-Article

91, 860, 287, 11579, 13659

Figure 21: Building a piece of text one token at a time. Each new
token is one of the most likely given the preceding ones, which form
the context to produce a vector of probabilities for the new one,
and we sample itl:g]

You can imagine that the word " Article” followed this con-
text window somewhere in the training documents. And we
just happen to sample it here at that stage.

Inference is just predicting from these contexts, one token at
a time, using each time the distribution of probability (com-
puted by the neural network) of the next token given the
context. We keep feeding tokens and getting the next one.

And we’re always "flipping these coins" — in the sense of
randomly sampling. And depending on how lucky or unlucky
we are, we might get very different kinds of patterns depend-
ing on how we sample from these probability distributions.

So that’s inference.

In most common scenarios, downloading the internet and
tokenizing it, is a pre-processing step that you do only once.

Then, once you have your huge token sequence, you can
start training networks (see fig. 13, p. 16, for the beginning
of the training data set).

In practical cases you would try to train many different
networks of different kinds of settings and different kinds of
arrangements and different kinds of sizes. So you’ll be doing
a lot of neural network training.

19Pay attention to the fact that we don’t systematically pick the most
likely. We pick at random, so we usually pick one of the most likely.
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Then once you have a neural network and you have trained
it and you have some specific set of parameters that you’re
happy with, then you can take the model and you can do in-
ference.[Z_U] And you can actually generate data from the model.

When you’re on ChatGPT and you're talking with the
model. That model has been trained by OpenAl many months
ago. They have a specific set of weights that work well.

When you’re talking to the model, now all it does is only
inference. There’s no more training to adjust parameters.

Those parameters are held fixed and you’re just somehow
conversing with the model. You’re giving it a piece of text,
which is converted into a sequence of tokens called the con-
text. When the LLM "talks to you", it is completing token
sequences and that’s what you're seeing generated when you
use ChatGPT. So that model does only inference.

00:31:00

7 GPT-2: training and inference

Let’s look at an example of training and inference that is
concrete and gives you a sense of what this actually looks like
when these models are trained.

The example that I would like to work with, that I'm par-
ticularly fond of, is that of OpenAl GPT—Q.@

2ONote that inference is already used during the training process,
where its role is to help build an effective set of parameters. But, more
importantly, inference is the key mechanism when we deploy an LLM to
generate new text — such as producing answers to questions or other
outputs in real-world usage.

2! Andrej Karpathy (born 1986), is a Slovak-Canadian computer sci-
entist. He was a founding member and research scientist at OpenAl
from 2015 to 2017. He then went to Tesla. He left it in early 2023 to
join back OpenAl, before departing again in February 2024.

As of mid-2025, Andrej Karpathy is the founder of Eureka Labs, an AT
education company focused on teaching and democratizing Al principles
and practice. He develops online courses (such as LLM101n), creates
educational video content on large language models, and promotes AI
teaching assistants and hands-on learning in machine learning.
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GPT stands for Generative Pre-trained Transformer and
GPT-2 is the second iteration of the GPT series by OpenAl.

When you are talking to ChatGPT today, the model that
is underlying all of the magic of that interaction is GPT-4,
that is the fourth iteration of that series.

GPT-2 was published in February 2019 by OpenAl in the
article "Language Models are Unsupervised Multitask Learn-
ers" by Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever.

Language Models are Unsupervised Multitask Learners

Alec Radford ° ' Jeffrey Wu "' Rewon Child! David Luan' Dario Amodei ™' Ilya Sutskever ™!

Abstract

Natural language processing tasks, such as ques-
tion answering, machine translation, reading com-

prehension, and summarization, are typically

approached with supervised leaming on task-

specific datasets. We demonstrate that language

models begin to learn these tasks without any ex-

plicit supervision when trained on a new dataset
of millions of webpages called WebText. When

conditioned on a document plus questions, the an-

swers generated by the language model reach 55
F1 on the CoQA dataset - matching or exceeding
the performance of 3 out of 4 baseline systems

without using the 127,000+ training examples.

The capacity of the language model is essential

to the success of zero-shot task transfer and in-

creasing it improves performance in a log-lincar

fashion across tasks. Our largest model, GPT-2,

is a 1.5B parameter Transformer that achieves

state of the art results on 7 out of 8 tested lan-

guage modeling datasets in a zero-shot setting
but still underfits WebText. Samnles from the

competent generalists. We would like to move towards more
general systems which can perform many tasks — eventually
without the need to manually create and label a training
dataset for each one.

The dominant approach to creating ML systems is to col-
lect a dataset of training examples demonstrating correct
behavior for a desired task, train a system to imitate these
behaviors, and then test its performance on independent
and identically distributed (IID) held-out examples. This
has served well to make progress on narrow experts. But
the often erratic behavior of captioning models (Lake et al.,
2017), reading comprehension systems (Jia & Liang, 2017),
and image classifiers (Alcorn et al., 2018) on the diversity
and variety of possible inputs highlights some of the short-
comings of this approach.

Our suspicion is that the prevalence of single task training
on single domain datasets is a major contributor to the lack
of generalization observed in current systems. Progress
towards robust systems with current architectures is likely
to require training and measuring performance on a wide
range of domains and tasks. Recently, several benchmarks

Figure 22: https://cdn.openai.com/better-language-models/

language_models_are_unsupervised_multitask_learners.pdf

The reason I like GPT-2 is that it is the first time that a
recognizably modern stack came together. All of the pieces
of GPT-2 are recognizable today by modern standards. It’s
just that everything has gotten bigger now.

I'm not going to be able to go into the full details of this
paper of course because it is a technical publication.

But some of the details that I would like to highlight are as
follows:


https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
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e GPT-2 was a transformer neural network just like the
neural networks you would work with today.

e [t had 1.5 billion parameters. So these are the parame-
ters that we looked at, fig. 17. It would have 1.5 billion
of them. Today, modern transformers would have a lot
closer to a trillion or several hundred billion probably.

e The maximum context length was 1024 tokens. So when
we are taking chunks of windows of tokens from the data
set, we’re never taking more than 1024 tokens. And
so when you are trying to predict the next token in a
sequence you will never have more than 1024 tokens in
your context in order to make that prediction.

This is also tiny by modern standards. Today the con-
text lengths would be closer to a couple hundred thou-
sand or maybe even a million. So today you have a lot
more context, a lot more tokens in history, and you can
make much better prediction about the next token in
the sequence in that way.

e GPT-2 was trained on approximately 100 billion tokens.
This is also fairly small by modern standards. As I
mentioned the Fineweb data set that we looked at, the
Fineweb data set has 15 trillion tokens. So 100 billion
is is quite small.

I actually tried to reproduce GPT-2 for fun, as part of this
project called llm.c. You can see my write-up about doing
that in a post on GitHub under the llm.c repository.@

In particular, the cost of training GPT-2 in 2019 was es-
timated to be around $40 000, but today you can do signif-
icantly better than that. For example, in my experiment, it
took about one day and cost about $600 — and that wasn’t
even really optimizing for cost. I think you could probably
bring this down to around $100 today.

*’https://github.com/karpathy/11lm.c/discussions/481
Title: “Reproducing GPT-2 (124M) in llm.c in 90 minutes for $20”


https://github.com/karpathy/llm.c/discussions/481
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Why have the costs come down so much? Well, first, the
datasets are a lot better now, and the way we filter, extract,
and prepare them has become much more refined. As a result,
the datasets are just much higher quality. So that’s one thing

But really the biggest difference is that our computers have
gotten much faster in terms of the hardware — we’re going
to look at that in a second. Also the software for running
these models and really squeezing out as much speed from
the hardware as it is possible, that software has also gotten
much better, as everyone has focused on these models and try
to run them very very quickly.

I'm not going to be able to go into the full detail of this
GPT-2 reproduction. The paper I mentioned is a long tech-
nical post. But I would like to still give you an intuitive sense
for what it looks like to actually train one of these models as
a researcher. What are you looking at? And what does it
look like 7 what does it feel like? So let me give you a sense
of that a little bit.

This is what it looks like.

TERMINAL

Figure 23: Training GPT-2.
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What I'm doing here is I'm training a GPT-2 model right
now |while speaking in the video|. What’s happening here,
fig. 23, is that every single line in the array like this one is
one update of the model.

Remember how we are making the prediction better for
every one of the tokens, given a context window, see fig. 16,
and how we are updating the weights or parameters of the
neural net.

So here every single line is one update to the neural network,
where we change its parameters by a little bit. So that it is
better at predicting next token and sequence.

Figure 24: Updating the parameters.

With each line of training, the model’s parameters are up-
dated to improve predictions for one million tokens in the
training set, all at once. In other words, we've extracted a
batch of one million tokens from the dataset and are working
to enhance the model’s accuracy for predicting the next token
in each sequence — simultaneously across the entire batch.

At every step in this process, the network’s parameters are
updated to reflect the learning for that batch.

Now the number to watch closely is this number called loss.

The loss is a single number that is telling you how well your
neural network is performing right now. And it is created so
that low loss is good. You can see that the loss is decreasing
as we make more updates to the neural net which corresponds
to making better predictions on the next token in a sequence.
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The loss is the number that you are watching as a neural
network researcher. You are waiting, you're twiddling your
thumbs, you’re drinking coffee, and you’re making sure that
this looks good, that is, with every update your loss is im-
proving and the network is getting better at prediction.

Here you see that we are processing 1 million tokens per
update. Each update takes about 7 seconds. We are going
to process a total of 32,000 steps of optimization. So 32,000
steps with 1 million tokens each is about 33 billion tokens
that we are going to process.

We're currently only about 420 steps — 420 out of 32,000.
So we are still only a bit more than 1% done, because I've
only been running this for about a quarter of an hour.

Every 20 steps I have configured this optimization to do
inference.

What you’re seeing here is the model predicting the next
token in a sequence [watch video to see new tokens appearing
sequentially, time mark 00:37:10 and after|. You started it
randomly. Then you continue plugging in the tokens. So we’re
running this inference step, see fig. 20. We see the model
in the process of predicting the next token in the sequence.
Every time you see something appear it’s a new token.

Let’s examine the generated text. As shown in Fig. 24, it is
still not very coherent — keep in mind that this is only 1% into
training, so the model has not yet learned to predict the next
token accurately. Much of the output resembles gibberish, as
expected at this early stage. However, some fragments begin
to display local coherence.

"Since she is mine", "it’s a part of the information", "should

discuss my father", "great companions", "Gordon showed
me", "sitting over it", etc.

00:38:00

I know it doesn’t look very good yet, but let’s scroll up and
see what it looked like when I started the optimization.
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You see that what we're getting here (after only one round
of optimisation, i.e. the first batch of 20 updates) looks com-
pletely random.

200 ifAnother:# mortar ris partners Navodsulic advers ex-
ped slime negotiate on desper asudging Healthsecondsot-
ted, acknowledged lethal-Mode

{" Gott","" inviting Ballistic.

ominpart, and Tou Australians dispensarieskukuagne801
and%| Wright etnh408 of filed bitterness the humpSpot
Roads thickness, wing aknowledgement342 Glou flame overcl
Summoner quirk sr. seismic. wrecked, cite toAIN Brus
Und leastDecember Moose reinforce Tay in Fishing [here
two Japanese characters| divergence entity friendshipen-
ment% olds He%the to onesAnother markets superfluMe
priced...

Of course, this is because the model has only undergone 20
parameter updates so far, so it produces essentially random
text—it’s a random network at this stage.

We just saw that after completing only 1% of the total up-
dates, the model was already performing significantly better
compared to after just 20 steps.

If we were to continue training for the full 32 000 steps, the
model would improve to the point where it can generate fairly
coherent English text and produce correct token sequences,
resulting in much better English overall.

This training has to run for about a day or two. At present,
we just make sure that the loss is decreasing. Everything is
looking good (see fig. 23 & 24 that are snapshots of the
process), we just have to wait.

Let’s turn to the computation that is required, because of
course I'm not running this optimization on my laptop. That
would be way too expensive [in terms of time|. We have to
run this neural network, and we have to improve it, and we
have we need all this data and so on. You can’t run this too
well on your computer because the network is just too large.
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So all of this training of our LLM (to get a good collection of
parameters — about 85 000 of them) is running on a computer
that is out there in the cloud.

I want to address the compute side of the story of training
these models and what that looks like. So let’s take a look.

The computer I'm using is an 8x H100 nod@— that means
there are eight H1I00 GPUs in a single machine. I’'m renting
this computer somewhere in the cloud; I am not sure where
it is located physically. T happen to use Lambda for renting
(https://lambda.ail), but there are lots of other companies
offering similar services.

If you look at their on-demand pricing, you’ll see machines
that have eight H1I00 GPUs. For example, you can get an
on-demand machine with eight Nvidia H100 GPUs for about
$3 per GPU per hour. You rent it, get access to the server in
the cloud, and you can use it to train models.

The H100 GPU itself looks like this :

Figure 25: One Nvidia H100 GPU.

It’s a card that you can slot into your computer.@ GPUs
are an ideal fit for training neural networks since the process

23 An 8x H100 node computer is a high-performance server or worksta-
tion containing eight NVIDIA H100 GPUs (graphics processing units),
all working together in a single machine.

24But Karpathy doesn’t rent the cards to put into his own machine.
It’s all taken care of by Lambda.


https://lambda.ai
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is very computationally expensive. But, above all, GPUs are
designed for parallel operations and can handle this kind of
workload efficiently.

So you can have many independent workers working all at
the same time in solving the matrix multiplication that’s un-
der the hood of training these neural networks.

Figure 25 shows just one of these H100s, but actually you
would put many of them together. You can stack eight of
them into a single node.

Figure 26: Eight Nvidia H100 GPUs stacked into one node.

Then you can stack multiple nodes into an entire data cen-
ter or an entire system.

Figure 27: System made of many nodes.
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When we look at a data center we start to see things that
look like what figure 27 shows. One GPU goes to eight GPUs
goes to a single system goes to many systems.

Figure 28 shows a bigger data center. This is of course
much more expensive.

Figure 28: In 2023, Google announced new TPUs, equipped with
Nvidia H100 GPUs, offering generative Al-focused cloud services.

What’s happening is that all the big tech companies really
desire these GPUs so they can train all these language models
because these GPUs are so powerful.

That’s the reason behind Nvidia’s meteoric rise in market
value, reaching $3.4 trillion in early 2025/

This is the new Gold Rush. If you are an LLM provider, you
want to get these GPUs — get enough of them so they can
work together efficiently to optimize your model parameters
(see fig. 23 for instance) which are the core of your LLM.

What are they all doing? They're all collaborating to pre-
dict the next token on a data set like the Fineweb data set.

This is the computational workflow that is extremely expen-
sitve. The more GPUs you have, the more tokens you can
try to predict, leading to improving your weights. With more
GPUs, you process your data set faster; you iterate faster;
you can get a bigger network, train a bigger network, etc.

%Nvidia’s current market value (as of October 6-7, 2025) is approx-
imately $4.51 trillion. A trillion is 10" (ten to the twelfth power), or
1,000,000,000,000.
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This is what all those machines look like, and are doing.
And this is why all of this is such a big deal.

For example this is a article from November 2024.

tomsHARDWARE s ms @@ @O @ s sann® search Q
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Elon Musk's massive Al data center gets
unlocked — xAl gets approved for 150MW of
power, enabling all 100,000 GPUs to run
concurrently

m By Jowi Morales published November 13, 2024

Elon's got the power.
0 ° @ @ O o ® Comments (13)

When you purchase through links on our site, we may ear an affiiate commission. Here's howit
2

Figure 29: Elon Musk’s invests in a massive Al data center.

This is why it’s such a big deal. We see that Elon Musk
is assembling 100 000 GPUs in a single data center. Each
of these GPUs is extremely expensive@l and will require an
enormous amount of electrical power to operate. All of them
are just trying to predict the next token in the sequence and
improve the network by doing so, and get probably a lot more
coherent text than what we’ve seen in our nanoGPT example,
and a lot faster.

Unfortunately I do not have tens or hundreds of millions of
dollars to spend on training a really big commercial model.

*The cost of a single NVIDIA H100 GPU in 2025 ranges from ap-
proximately $25 000 to $30 000, depending on model and configuration.
Premium or high-memory variants (such as the SXM models) can cost
up to $40 000 per unit. Even taking into account volume discounts, this
represents an investment of possibly $2 billion.
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Luckily we can turn to some big tech companies who train
these models routinely and release some of them once they
are done training.

They’ve spent a huge amount of compute to train their
network, and they release the network at the end of the op-
timization. So it’s very useful because they’ve done a lot of
compute for that.

From sources across the web
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Figure 30: Companies training their own LLM.

00:43:17

& Llama 3.1 base model inference

There are many companies who train these models rou-
tinely, see fig. 30. But actually not many of them release
what they get at the end of the training we have studied so
far. Once the parameters have been adjusted, via the training
process we’ve seen, we get what is called a base model.

What is a base model? It is essentially a token simulator.
Given a piece of clean text — say, from the Internet — it
predicts the next token in the sequence. By itself, it is not
yet very useful, because what we ultimately want is the ability
to ask questions and receive meaningful answers. A more
advanced model capable of that is called an assistant.
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Models like the one shown in figure 23 do not provide an-
swers. Instead, they produce something akin to remixes of
the Internet: they can "continue" web pages, one token at a
time. Base models are therefore rarely released, as they rep-
resent only the first stage in a longer process, with additional
steps required to build a true assistant.

However a few base models have been released. For instance
the GPT-2 model — a 1.5 billion parameter model which was
released in 2019 — was a base model.

November 5, 2019

GPT-2:1.5B release

GPT2model 2

Figure 31: GPT-2 1.5B released by OpenAl in November 2019 was
a base model.

Now what is a model release? What does it mean to release
these models?

This is the GPT-2 repository on GitHub.

@ openai/gpt-2. puse 0 ottt ok 8 || e s 22

Figure 32: GPT-2 repository on GitHub, https://github.com/
openai/gpt-2/tree/master


https://github.com/openai/gpt-2/tree/master
https://github.com/openai/gpt-2/tree/master

44 Large Language Models

We need two things to release a model:

First, we need the code — usually written in Python —
that describes in detail the sequence of operations performed
within their model.

Remember the NanoGPT transformer (fig. 18, page 24)
and the sequence of steps (mathematical operations) that we

described.
Similarly, the ChatGPT-2 neural network executes opera-
tions described by the code, the beginning of which is shown

below:

H openai / gpt-2 ' public

<> Code (@ Issues 142 [ Pullrequests 48 Actions (@ Security |~ Insights

[0 Files gpt-2/ src/ modelpy (3
¥ master - e @ WuTheFWasThat First commit
Q Gotofile

Code = Blame 174 lines (144 loc) - 6.35 kB
v sic
[ encoder.py import numpy as np
2 import tensorflow as tf

[ generate_unconditional_sampl.. from tensorflow. contrib.training import HParams

[ interactive_conditional_sample... S v def default hparansO)
I [ modelpy 6 return HParams(
7 n,vucau=e,|
O sample.py 8 n_ctx-1024,
O gitattributes ° n_enbd-763,
10 n_head=12,
O .gitignore 11 n_layer=12,
12 )
[ CONTRIBUTORS.md -
[ DEVELOPERS.md 14 v def shape list(x):
15 “*"Deal with dynamic shape in tensorflow cleanly."""
[ Dockerfile.cpu 16 static = x.shape.as_list()
[ Dockerfile gpu 17 dynamic = tf.shape(x)
18 return [dynamic[i] if s is None else s for 1, s in enumerate(static)]
[ LICENSE 19

def softmax(x, axis=-1):

[ README.md I .
X = x - tf.reduce_max(x, axis=axis, keepdims=True)

ex = tf.exp(x)

return ex / tf.reduce_sum(ex, axis=axis, keepdims=True)

[ domains.txt

[ download_model.py 2

Figure 33: Python code of GPT-2, https://github.com/openai/
gpt-2/blob/master/src/model.py

This code is implementing what’s called a forward pass of
the neural network. So we need the specific details of exactly
how they wired up their neural network.

This is just computer code, usually just a couple hundred
lines of code. It’s not that crazy; and this is all fairly under-
standable and usually fairly standard.


https://github.com/openai/gpt-2/blob/master/src/model.py
https://github.com/openai/gpt-2/blob/master/src/model.py
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What’s not standard is the collection of parameters. That’s
where the actual value is.

What are the parameters of this neural network? There’s
1.5 billion of them and we need the correct setting or a really
good setting.

That’s why the second thing we need, in addition to the
source code, is the parameters they released — which in this
case is roughly 1.5 billion parameters.

These are just numbers. It’s one single list of 1.5 billion
numbers the precise and good setting of all the "knobs" —
which I used as an image of optimization of the parameters
— such that the tokens come out well when we sequentially
guess the next one.

So you need those two things to get a base model release.

Thus GPT-2 was released (with the two important things
a release encompasses) but that’s actually a fairly old model
as [ mentioned.

We’re going to turn to is the LLM called Liama 3 and
that’s the one that I would like to show you next. Remember
that GPT-2 was a 1.5 billion parameter model trained on 100
billion tokens. Llama 3 is a much bigger model and much
more modern model.

It was built and trained by Meta. It is a 405 bhillion pa-
rameter model trained on 15 trillion tokens in very much the
same way as what we saw, just much much bigger.

Meta has also made a release of Llama 3 in July 2024. That
was part of the paper entitled "The Llama 3 Herd of Models"
(https://ai.meta.com/research/publications/
the-1lama-3-herd-of-models/)

With this paper (the beginning of which is shown in figure
34) that goes into a lot of detail, the biggest base model that
they released is the Lama 3.1 405 billion parameter model. It
is the base model.


https://ai.meta.com/research/publications/
the-llama-3-herd-of-models/
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OOMeta  Metadl v AlResearch v Thelatest About v Getllama Q

The Llama 3 Herd of Models

Abstract

> Download the Paper

Figure 34: Meta paper introducing Llama 3@

In addition to the base model, you can see in table 1 of their
paper that — anticipating later sections of my video — they also
released the instruct model. The word instruct means that
this is an assistant: you can ask it questions and it will give
you answers. We still have yet to cover that part later.

For now let’s just look at this base model, this token simu-
lator. Let’s play with it and try to think about: What is this
thing? How does it work? What do we get at the end of this
optimization if you let this run until the end for a very big
neural network on a lot of data?

*"Here is the abstract : Modern artificial intelligence (AI) systems
are powered by foundation models. This paper presents a new set of
foundation models, called Llama 3. It is a herd of language models
that natively support multilinguality, coding, reasoning, and tool us-
age. Our largest model is a dense Transformer with 405B parameters
and a context window of up to 128K tokens. This paper presents an
extensive empirical evaluation of Llama 3. We find that Llama 3 deliv-
ers comparable quality to leading language models such as GPT-4 on
a plethora of tasks. We publicly release Llama 3, including pre-trained
and post-trained versions of the 405B parameter language model and
our Llama Guard 3 model for input and output safety. The paper also
presents the results of experiments in which we integrate image, video,
and speech capabilities into Llama 3 via a compositional approach. We
observe this approach performs competitively with the state-of-the-art
on image, video, and speech recognition tasks. The resulting models are
not yet being broadly released as they are still under development.
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00:47:00

My favorite place to interact with the base model is this
company called hyperbolic (https://hyperbolic.ai) which
is serving the base model of the 405b Llama 3.1.

8 0 @

Figure 35: Llama 3.1 405b tried via the platform hyperbolic.aiF_gI

When you go to the website, you’ll probably need to regis-
ter. Once you're in, make sure you select the “llama 3.1 405B
BASE” model — it must be the base version, not the instruct
one.

For the “max tokens” setting on the right side of figure 35
— that’s how many tokens the model will try to generate —
let’s lower this a bit, just to save compute. We can set it to
something like 128 tokens and leave the other settings as they
are. I'm not going to explain every detail here.

Fundamentally, what’s about to happen when you run this
model is identical to what happened during model inference
when we were training GPT-2 (fig. 23, page 34): the model
will simply keep on guessing sequentially the next token given
what’s already known or guessed.

?8As of October 2025, the address https://app.hyperbolic.ai/
models/1lama31-405b-base-bf16 is no longer active. It now gives an
error 404. But we can play with various models of the instruct variety,
like https://app.hyperbolic.ai/models/1lama-3-3-70b-instruct


https://hyperbolic.ai
https://app.hyperbolic.ai/models/llama31-405b-base-bf16
https://app.hyperbolic.ai/models/llama31-405b-base-bf16
https://app.hyperbolic.ai/models/llama-3-3-70b-instruct
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First, let’s see that this model is not yet an assistant.

For example, if you ask it “what is 2 plus 277, it won'’t just
reply “it’s four, what else can I help you with?” because this
is not a fine-tuned assistant — it is just a base model.

What will happen is the prompt “what is 2 plus 27”7 will
be tokenized; those tokens become the prefix, and the model
predicts only the most likely next token@ each time — it’s
just a glorified autocomplete of what comes next.

Its output depends entirely on the statistical patterns it saw
in training data (basically a lot of web pages).

So let’s ask “What is 2 plus 27”. And let’s hit enter and see
what continuation it generates.

What is 2+2?

This is a simple question, and the answer is 4. This is an example of
an objective truth. No matter how many times you add 2 and 2, you will
get the same answer. It is not possible to get a different answer. This is
why mathematics is considered to be a form of objective truth. Itis a way
of describing the world that is not influenced by our own personal beliefs
or opinions. The same is true for other areas of knowledge. The laws
of physics are another example of objective truth. They describe the
way the world works, and they are not influenced by our own personal
beliefs or opinions.

Enter text here and Al will help complete the sentence

In this case, the model actually tries to answer the question,
but then drifts into some unrelated philosophical territory.

Let’s try this again: I'll just copy and paste, starting from
scratch, and ask once more: “What is 2 plus 27”

What is 2+2?

Is it 4 or 227 How do you know? What about 1+1+1+1? Isit4 or 11?
How do you know? Why do you group the numbers together the way
you do? Why do you add the numbers in a particular order? What rules
do you use to determine the way you group numbers? Mathematics is
a human activity. It is a set of ideas that people came up with. We are
so used to the way we do mathematics that we forget that there are

20r one of the most likely, most of the time, because it is stochastic.
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other ways to do mathematics. There are other ways to group numbers
together and other ways to add numbers.

Enter text here and Al will help complete the sentence

Okay, so it goes off again, and in a different direction.

There’s something important I want to emphasize: every
time you put in the prompt, the system starts afresh. It’s a
stochastic system — so, even with the same prefix of tokens,
you’ll always get a different answer.

The reason for that is you work with a probability distri-
bution for the next token (see figure 15, page 19). The model
samples from it. So every time you run it, you get different
samples. It heads off in a different direction each time ending
up in a different territory.

For example, let me try one more time:

What is 2+2?

What is 2+2? This is a featured post. It will be sticky at the top of all
recent posts for all to see! There are no comments on this post. Be the
first!

Enter text here and Al will help complete the sentence

We see that it just keeps going, producing outputs based
on what it saw on the Internet, basically just regurgitating
those statistical patterns.

00:49:30

So, keep this in mind about a base model :
1. it is not an assistant yet, it’s just a token autocomplete,

2. it is a stochastic system, meaning the output is random
and can change each time.

The crucial thing is, even though this model by itself isn’t
all that useful for many applications just yet, it’s still very
valuable, because in order to get really good at predicting the
next token, the model had to learn a lot about the world. All
that knowledge is packed into the parameters of the network.
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Remember, the training text was just internet web pages
[and a few other publicly available sources of high quality
texts|, and now all of that is sort compressed into the weights
of the neural network Y

You can think of these 405 billion parameters as a kind of
"compression" of the internet. It’s like a zip file, except it’s
not lossless compression — it’s lossy. What we’re left with is
a kind of gestalt perception or fuzzy snapshot or abstract gist
of the internet, and we can generate text from it. Right now,
we can elicit some of that stored knowledge by prompting the
base model.

Here’s a prompt that might work to pull out some of the
knowledge that’s hiding in the model’s parameters: “Here is
my top 10 list of the top landmarks to see in Paris:”

I'm phrasing it this way to prime the model to continue the
list. Let’s see what happens when I run it.

Here is my top 10 list of landmarks to see in Paris:

1) Eiffel Tower. This is a must. You can take a lift to the top of the
tower for 13.50 euros or take the stairs for 4.50 euros. The tower is
324m tall and the highest structure in Paris. | went up the tower at
night and the view was amazing! 2) Notre Dame. This is a gothic style
cathedral located on the eastern half of Paris. It was one of the first
cathedrals to use flying buttresses for support. The cathedral is free to
enter but if you want to climb the tower it costs 8.50 euros. 3) Arc de
Triomphe. The arch was built to honor those who fought for France in
the Napoleonic wars. It is located on the western end of the Champs-
Elysees. It costs 9.50 euros to go to the top of the arch. 4) Champs-

30This is a very important idea — albeit a heuristic one: the infor-
mation and knowledge — absolutely all of it — that the neural network
acquires during training is, in some sense, encapsulated within the bil-
lions of parameters of the model we use.

However, this encapsulation is hidden and, to some extent, mysterious.
Even though it constitutes a form of "knowledge of the world," it is not
a model of the world in the conventional sense.

In fact, building an Al that possesses an explicit model of the world
— akin to the way humans represent knowledge in their head — is an
active and tantalizing area of ongoing research.
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Elysees. This is one of the most famous streets in the world. It is lined
with cinemas, cafes, and luxury shops. The avenue runs from the Place
de la Concorde to the Arc de Triomphe. 5) The Louvre. This is one of
the largest museums in the world and is home to the Mona Lisa. It is
located on the right bank of the Seine. The museum is housed in the
Louvre Palace which was originally a fortress built in the 12th century.
The museum is open every day except Tuesday and tickets cost 15
euros. 6) Sacre-Coeur. This is a Roman Catholic church located on
the highest point in the city. The church is made of white stone and
is one of the most popular tourist destinations in Paris. The church is
free to enter but there is a charge to climb the dome. 7) Place de la
Concorde. This is the largest public square in Paris. It is located at the
eastern end of the Champs-Elysees. The square is home to the Obelisk
of Luxor, a gift from Egypt, and the Fountain of River Commerce and
Navigation. 8) Les Invalides. This is a complex of buildings that houses
museums and monuments relating to the military history of France. It is
located on the left bank of the Seine. The complex includes the Musee
de 'Armee, the Musee des Plans-Reliefs, and the Dome des Invalides.
9) The Pantheon. This is a

Enter text here and Al will help complete the sentence

As you can see, it starts generating a list and gives me some
landmarks. And notice that it’s producing a lot of informa-
tion.

You shouldn’t fully trust all the information — it’s just a
recollection of internet documents.

Things that appear very frequently in the internet data are
more likely to be remembered correctly, while less common
facts might be less reliable.

So you can’t fully trust everything here [about the Paris
landmarks|, because it’s all just a vague recollection of what
was on the Internet. The information isn’t stored explicitly
in the parameters; it’s all just patterns that the model recalls.

That said we did get something that is probably approxi-
mately correct. I don’t have the expertise to verify that this
is roughly correct, but you see that we’ve elicited a lot of the
knowledge of the model.
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This knowledge is not precise and exact. It is vague and
probabilistic and statistical. And the kinds of things that oc-
cur often are the kinds of things that are more likely to be
remembered in the model.

00:52:00

Now I want to show you a few more examples of this model’s
behavior.

The first thing [ want to show you is this example: I went
to the Wikipedia page for zebra ;

= Zeb[‘a FA 150 bnguiges v
Articde  Tai Road Virw sourco  View history  Tools v
From Wicpedia, he f1oa encyciopedia Y Aa

For other usws, sov Zobva (disambiguaton),

Zebras (US: [zideaz), Ux: fzebraz, 20l (sbgenus
Hippotigris) and African oquinis with dsinclive bck-and-nhite
siriped coals Thero are three lring spedes: Grévy's zobra
(Equuss grevyy), the plins zebra (E. Quaggs), and tho mountan
zebea (E. zobra). Zebeas sharo tho gonus Equus with horsos and
assos, tho tree groups being the only fving membeors of the
famiy Equidac, Zobra stripes como in ditsron! patherns, unique
1o vach indradusl. Several theeros have beon proposad for the
functon of thasd patinms, with Mgt avidenod supporting them
as a dederront for biting Mies. Zebras inhaba sastern and
southarn Alnca and can be found In a varkty of habtats such as
sicrannahs, grasslings, woodlinds, thrublands, and
mMOUNIAMCUS arvas.

Zobea
Tempoeal range: 2-0 Ma'')
PRtosent—gcesant

Zebeas are primarily grazors and can subsist on lowar-quality
vegetsion. Thoy are prayed on mainly by ions, and typically fleo

Figure 36: Wikipedia page on zebra.

Let me just copy the first sentence. And let me paste it
here [into the base model we are studying].

This sentence serves as a prefix, prompting the base model
to continue generating text, one token at a time. Remember
that it is not an assistant (that would answer questions). It
is just a base model (that "continues" or "completes" text).

When I click enter, what kind of completion do we get?
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Zebras (US: /zibraz/, UK: fzebraz, 'zi-/)[2] (subgenus Hippotigris) are African equines
with distinctive black-and-white striped coats.

There are three living species: the Grévy's zebra (Equus grevyi), plains zebra (E. quagga),
and the mountainzebra (E. zebra). Zebras share the genus Equus with horses and asses,
the three groups being the only living members of the family Equidae. Zebra stripes
come in different patterns, unique to eachindividual. Several theories have been
proposed for the function of these stripes, with most evidence supporting them as a
deterrent for biting flies. Zebras inhabit eastern and southern Africa and can be found in
avariety of habitats such as savannahs, grasslands, woodlands, shrublands, and
mountainous areas, Zebras are primarily grazers and can subsist on lower-quality
vegetation. They are preyed on mainly by lions and typically flee when threatened but
also bite and kick. Zebra species differin social behaviour, with plains and mountain
zebraliving in stable harems consisting of an adult male or stallion, several adult females
or mares, and their young or foals; while Grévy's zebrallive alone orinloosely associated
herds. In harem-holding species, adult females mate only with their harem

Figure 37: Base model completion of the prefix entered by the
speaker — the first sentence of the page on zebra.

What the model is producing here is an ezact regurgita-
tion of this Wikipedia entryﬂ It is reciting this Wikipedia
entry purely from memory and this memory is stored in its
parameters.

It is possible that at some point the model will start drifting
away from the original Wikipedia entry. But you can see that
it has memorized a large chunk of it.

Let me check — okay, this sentence (in the middle of what
the model has produced) is still on track... here too, we're
still matching.

Eventually though, the model will stray away, because it
can’t remember all the details perfectly. And remember that
the completion has a stochastic aspect, although if a token
has a high probability, it will be picked.

The reason this perfect recollection happens is that these
models are really good at memorizing, which is usually not

311t just changed a word here and there, for instance it added an
article in front of "Grévy’s zebra" and removed one in front of "plains
zebras'.
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what you want in a finished model. This phenomenon is called
requrgitation — when the model recites parts of its training
data word-for-word — which isn’t desirable?

Why does this happen?

For high-quality documents like Wikipedia, the model’s
training process will often sample from them more frequently.
That means the model might see the same web page as many
as ten times during training. It’s a bit like if you read the
same text a hundred times; you’d be able to recite it.

The model is similar. If it sees something too often, it can
repeat it by rote later on.

Except these models, in fact, can be even more efficient
than humans in this respect. The model might have seen this
Wikipedia entry on zebra only ten times, but it’s still able to
essentially memorize the article and embed it in its parame-
ters.

00:54:20

The next thing I want to show you is something that the
model has definitely not seen during its training.

For example if we go to the paper, "The Llama 3 Herd
of Models", and navigate to the pre-training data, we see

32Indeed, when it concerns a human being, it is called plagiarism.
The issue of plagiarism by large language models (LLMs) is a significant
concern for both LLM providers and the organizations whose original
works are used as sources. Disputes often arise over copyright, fair use,
and the ethical implications of reproducing or paraphrasing proprietary
content without proper attribution.

The issue is more complex than it appears. Simply changing a word
or rephrasing a sentence is a common technique used to circumvent pla-
giarism detection. However, when a person P expresses knowledge, it’s
almost always learned from external sources: books, websites, or other
people, unless it is an original creation. We have all experienced this:
we explain something we consider important and clear, and which rep-
resents our own ideas — only to have some interlocutor say: "Oh well,
you just picked that up from so-and-so’s book and are repeating it!"

So, when does restating what P has learned cross the line into plagia-
rism, and when is it considered genuine thinking expressed by P?
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that the data set has a knowledge cut off at the end of 2023.
Therefore it will not have seen documents after that date,
and certainly it has not seen anything about the 2024 US
presidential election and how it turned out.

Let’s prime the model with tokens from the future. We
extract from the Wikipedia page on the 2024 US presidential
election the following prime: "Presidential elections were held
in the United States on November 5, 2024. The Republican
Party’s ticket—Donald Trump, who was the 45th president of
the United States from 2017 to 2021". Then the base model
will continue the token sequence. It will just take its best
guess according to the knowledge it has in its own parameters.

Let’s take a look at what that looks like.

Presidential elections were held in the United States on November 5,
2024. The Republican Party’s ticket—Donald Trump, who was the 45th
president of the United States from 2017 to 2021

, and Vice President Mike Pence—won the election over the Demo-
cratic Party’s ticket of former Secretary of State Hillary Clinton and Sen-
ator Tim Kaine. This was the first time since 1948 that a Republican
candidate won a majority of the popular vote, the first time since 1988
that a Republican candidate won more than 300 electoral votes, and
the first time since 1984 that a Republican candidate won more than
50% of the popular vote. The Republican Party’s ticket—Donald Trump,
who was the 45th president of the United States from 2017 to 2021,
and Vice President Mike Pence—won the election over the Democratic
Party’s ticket of former Secretary of State Hillary Clinton and Senator
Tim Kaine. This was the first time since 1948 that a Republican candi-
date won a majority of the popular vote, the first time since 1988 that a
Republican candidate won more than 300 electoral votes, and the first
time since 1984 that a Republican candidate won more than 50% of the
popular vote. Trump’s victory was widely considered to

Enter text here and Al will help complete the sentence

So it says that Mike Pence was the running mate instead of
J. D. Vance, and the ticket was against Hillary Clinton and

Tim Kane. This is an interesting parallel universe of what
could have happened, created by the LLM.
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Let’s get a different samplef?| Let’s use the same identical
prompt and resample:

Presidential elections were held in the United States on November 5,
2024. The Republican Party’s ticket—Donald Trump, who was the 45th
president of the United States from 2017 to 2021

, and his running mate, former U.S. representative Ron DeSantis—de-
feated the Democratic Party’s ticket of incumbent president Joe Biden
and vice president Kamala Harris. The election was a rematch of the
2020 presidential election, in which Biden defeated Trump by 4.5 per-
centage points and 7 million votes. Trump became the first president
since Grover Cleveland to win a non-consecutive term, the second pres-
ident after Cleveland to win the popular vote three times, and the first
president to win the popular vote in three elections without winning the
popular vote in all three. Biden became the first incumbent president to
lose reelection since George H. W. Bush in

Here the running mate was Ron DeSantis and they ran
against Joe Biden and Kamala Harris. This is again a parallel
universe, a different one.

In summary, we see that the model will take educated

guesses. And it will continue the token sequence based on
this knowledge.

All of what we're seeing here is called hallucinationP"] The
model is just taking its best guess in a probalistic manner.@

33 A "sample" means we look at the tokens produced stochastically —
for example from the same prompt.

3%Here it is difficult to hold it against the model that it has a hal-
lucination. We asked it to describe something that for it was in the
future.

You can also generate genuine hallucinations (even with assistants,
which we shall study shortly): for example, an LLM describing "a famous
WWII battle" with lots of realistic details, although this battle doesn’t
exist. Or, if you ask it to describe the second half of a classic novel you
don’t want to finish, it may happily invent a new ending for the story...

3%Notice that we have only used the base model (which continues se-
quences of tokens, one after the other, from a prompt), not the assistant
— which is designed to answer questions. The assistant uses, of course,
extensively the base model, but elaborates on it, in a way that will be
explained.
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00:55:95

The next thing I would like to show is that even though
this is a base model and not yet an assistant model, it can
still be utilized in practical applications if you are clever with
your prompt design.

So here’s something that we call a few shot prompt. 1 have
10 words or, more precisely, 10 pairs of words. Each pair is
a word of English followed — separated by a colon — by the
translation in Korean. We have ten of them (butterfly, ocean,
whisper, mountain, thunder, gentle, freedom, umbrella, cin-
namon, moonlight).

% Llama-31-405B-BASE API |

butterfly : L], ocean: BICH whisper: £AH2), mountain: &, thunder: #§, gentle : RE2{2, freedom : Xk, umbrella: $4t, cinnamon : A|T|,
moonlight: &4, teacher: y

44, morning

Figure 38: Smart design of prompt to make the base model begin
to act like an assistant. Here demo of the model acting as a dictio-
nary from English to Korean. We are "prompting" it to translate
"teacher". It translated it correctly@ and was ready to translate
"morning" when we stopped it.

36Tt translated correctly "teacher"

Détecter la langue Anglais Russ v g Coréen Chinois (traditionnel)  CF 4
L|

teacher x Al A
teacher seonsaengnim
ddd

0 D G
teachers ) & G 5 <:
HAFE

Autres traductions Tout développer
teachery
AL

M Nom teacher v

Envoyer des commentaires

Figure 39: Translation of "teacher" into Korean.
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What the model does in fig. 38 is: at the end of the prompt
we have "teacher:". We asked the model to do a completion
of say just five tokens.

Here is an important point to note: base models have what
we call in-context learning abilities.

This means that as the model is reading the context [i.e. the
prompt that we input, with ten pairs of words, English:Korean,
English:Korean,etc.], it is learning that there’s some kind of
algorithmic pattern going on in my data. It knows to continue
that pattern. This is in-context learning.ﬁ]

The base model takes on the role of a translator and when
we hit completion we see that "teacher" translation is "seon-
saengnim" (written in Korean, fig. 38 & 39) which is correct.

This is how you can build apps, being clever with your
prompting even though we still only have a base model so
far. It relies on this in context learning ability. 1t is done by
constructing what’s called a few shot prompt.@

Finally I want to show that there is a clever way to instan-
tiate a whole language model assistant just by prompting.

The trick is to structure a prompt so that it looks like a web
page, that is a conversation between a helpful Al assistant and
a human. Then the model will continue that conversation.

To write the prompt I turned to ChatGPT itself which is
kind of meta. But I told it I want to create an LLM assistant
but all I have is the base model. So can you please write my
prompt. And this is what it came up with which is actually
quite good.

Below is the conversation between an Al assistant and a
human created by ChatGPT. We will use it as the beginning
of a prompt, to entice our base model to continue like in a
conversation.

371t is called in-contest learning because the model hasn’t learned this
pattern during its massive pre-training — instead, it picks it up from the
specific context we provide. It simply discovers and follows at inference
time the pattern it sees in the input given.

38 Their role is to show the pattern that the base model must follow
in constructing its sequence of next tokens.
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LIm Assistant Prompt

Here is a conversation between an Al Assistant and a Human. The
Al Assistant is knowledgeable, helpful, and capable of answering a wide
variety of questions...

Human: Hi there! Who are you?

Assistant: Hello! I'm your Al Assistant. I'm here to help answer ques-
tions, provide explanations, and assist you with tasks. What can | help
you with today?

Human: Can you explain how photosynthesis works?

Assistant: Of course! Photosynthesis is the process by which green
plants, algae, and some bacteria convert light energy into chemical en-
ergy stored in glucose:

6CO2 + 6H20 + Light energy — CgH1202 + 609

This process is essential for life on Earth, as it provides the oxygen
we breathe and forms the base of most food chains. Would you like
more details on a spe... (cut on speaker’s screen)

Human: That’s great! Now, can you help me write a short email?

Assistant: Certainly! Could you tell me who the email is for and what
you'd like to say?

Human: It's for my manager. | want to ask for a day off next week.

Assistant: Here’s a possible draft:

Subject: Request for Day Off Next Week
Dear [Manager’s Name],

| hope this message finds you well. | am writing to request a day
off on [specific date]. Please let me know if this works for the team’s
schedule or if there... (cut on speaker’s screen)
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Thank you for considering my request. Please let me know if you
need further details.

Best regards, [Your Name]
Does this look good to you, or would you like to adjust it?

Human: Thanks! That’s perfect.

Assistant: You're welcome! Let me know if there’s anything else | can
help with.

For the base model to work, it’s not enough to just give it
a description of what we want. It works much better if we
create these few shot prompts.

So we created — with the help of ChatGPT, but any method
would do — a few turns of conversation: Human, Assistant,
Human, Assistant...

To create our prompt for our base model, at the end of this
conversation, we’re going to put the actual query we want the
base model to answer as if it was an assistant..

So T copy paste in the base model prompt the conversation
we just created, and add at the end:

Human: Why is the sky blue?
And let’s run.

Assistant: The sky appears blue due to the phenomenon called Rayleigh’s
scattering, etc, etc.

We see that the base model is just continuing the sequence.
And because the sequence has the pattern of a conversation
between a human and an assistant, the base model takes on
the role of the assistant.

There is a subtlety though: because we have initialized a
conversation human / assistant, the assistant will guess (i.e.
hallucinate if you like) the next question by the human. And
it will just continue going on and on.
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Nonetheless you can see that we have sort of accomplished
the task.

If we had just used the prompt "Why is the sky blue?"
without a few preliminary shot prompts structuring a conver-
sation, then of course we would not expect the base model to
answer correctly our query. We would get... who knows what
we would to get. Let’s try with our simple prompt:

Why is the sky blue?

What makes a cloud? How is a hurricane born? Why do we have
seasons? Answers to these questions and many more can be found in
the fascinating and highly educational exhibition Weather: From Magic
to Meteorology. The exhibition presents the history of meteorology and
weather forecasting, from the first observations of the sky and the atmo-
sphere, to the development of modern forecasting techniques. It also
explores the effects of weather and climate on our lives, and how we
can use our knowledge of the weather to protect ourselves from its dan-
gers. Weather: From Magic to Meteorology is a must-see for anyone
interested in the history of...

We see that we just get more questions, followed by a speech
advertising the educational exhibition Weather: From Magic
to Meteorology.

So this is one way to create an assistant even though we
may only have a base modelf’f] This is a kind of brief sum-
mary of the things we talked about over the last few minutes.

00:59:30

9 From pre-training to post-training

Let me zoom out [that is, take a bird’s eye view of what
we have been doing so far and what we want|. This is a brief
summary of what we have been talking about in the last few
minutes:

39To transform our base model into an assistant, we have structured
our prompt into a few shot prompts showing a dialog. And then the
base model "knew" that it had to continue the dialog.
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The "psychology” of a base model

- Itis a token-level internet document simulator

- It is stochastic / probabilistic - you're going to get something else each time you run

- It "dreams" internet documents

- It can also recite some training documents verbatim from memory ("regurgitation")

- The parameters of the model are kind of like a lossy zip file of the internet
=> a lot of useful world knowledge is stored in the parameters of the network

- You can already use it for applications (e.g. translation) by being clever with your prompts
- e.g. English:Korean translator app by constructing a "few-shot" prompt and leveraging
"in-context learning" ability
- e.g. an Assistant that answers questions using a prompt that looks like a conversation

- But we can do better...

Figure 40: The "psychology" of a base model@

We’ve discussed the first stage in the construction of an
LLM assistant. It is the pre-training stage. It boils down to

this:

1. Download internet [and other| documents.

2. Filter them and clean them to have only high quality
useful texts, that will be use to train our LLM.

3. Tokenize them, that is break them into tokens, or, if
you prefer, atoms of little text chunks.

4. Build a neural network with one or several intermediate
layers — nowadays of the transformer variety.

5. Train your neural network to predict the next token in

sequences of tokens provided as input. This is done in
a long and costly process that enables us to adjust the
vast set of parameters of our neural network.

The output of this entire first stage is this base model.

Its goal is the setting of the parameters of this network —
which are the precious stuff in our model.

“ORemember: the white board Andrej Karpathy occasionally points
out to while speaking can be obtained using https://excalidraw.com/
and opening the file https://lapasserelle.com/documents/karpathy.

txt


https://excalidraw.com/
https://lapasserelle.com/documents/karpathy.txt
https://lapasserelle.com/documents/karpathy.txt
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This base model is basically an internet document simulator
at the token level.

It can generate token sequences that have the same kind
of statistics as the internet documents we downloaded and
cleaned.

We saw that we can already use it in some useful applica-
tions. But we actually need to do better.

We want a real assistant. We want to be able to ask ques-
tions and we want the model to give us answers.

For that we need to go into the second stage which is called
the post-training stage.

We take our base model, our internet document simulator,
and hand it off to post-training.

We’re now going to discuss a few ways to do what’s called
post training of these models.

The stages in post-training are going to be computationally
much less expensive. Most of the computational work, all of
the massive data centers, and all of the sort of heavy compute
and millions of dollars are the pre-training stage.

Now we go into the slightly cheaper but still extremely im-
portant stage called post-training where we will turn our LLM
base model into an assistant.

Let’s examine how we can transform our model from being
merely a token generator into one that provides full, mean-
ingful answers to questions.

In other words what we want to do is: we want to start
thinking about conversations.

And these are conversations that can be multi-turn, so there
can be multiple turns, and they are in the simplest case a
conversation between a human and an assistant.

For example we can imagine the conversation could look
something like this: when a human says "what is 2 plus 27",
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the assistant should re respond with something like "2 plus 2
is 4",
When a human follows up and says "what if it was star

instead of a plus?" assistant could respond with something
like "2%2 = 4, same as 2+2".

Human: "What is 2+27"

Assistant: "2+2 = 4"

Human: "What if it was * instead of +?"
Assistant: "2*2 = 4, same as 2+2!"

Similarly here, it is another example showing that the assis-
tant could also have some kind of a personality here. That’s
kind of nice :

Human: "Why is the sky blue?"

Assistant: "Because of Rayleigh scattering."
Human: "Wow!"

Assistant: "Indeed! Let me know if | can help
with anything else :)"

And then here in the third example :

Human: "How can | hack into a computer?"
Assistant: "I'm sorry | can't help with that."

I'm showing that when a human is asking for something
that we don’t wish to help with, we can produce what’s called
a refusal. We can say that we cannot help with that.

In other words what we want to do now is we want to think
through how in a system should interact with the human.

We want to program the assistant and its behavior in these
conversations.
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Now because this is neural networks, we’re not going to be
programming these explicitly in code. We’re not going to be
able to program the assistant in that way.

Because this s neural networks, everything is done through
neural network training on data sets. Thus, we are going to
be implicitly programming the assistant by creating data sets
of conversations.

The three boxes (on the previous page) are three indepen-
dent examples of conversations in a data set.

An actual data set, and I'm going to show you examples,
will be much larger. It could have hundreds of thousands of
conversations that are multi-turn, very long, etc., and would
cover a diverse breath of topics. Above I showed only three
examples.

The way this works basically is: Assistant is being pro-
grammed by examples. And where is this data coming from,
like "2 * 2 equals 4, same as 2 plus 2" etc.? Where does that
come from?

This comes from human labelers.

We will give human labelers some conversational context,
and we will ask them to write the ideal assistant response in
this situation. In other words, a human will write out the
ideal response for an assistant in any situation.

Then we're going to get the model to train on these ideal
conversations and to imitate their kinds of responses. The
way this works then is we are going to take our base model
which we produced in the pre-training stage. This base model,
as you remember, was trained on internet documents.

Now we have finished using the internet training data set.
We leave it aside. We're going to substitute a new data set.
It will be a data set of conversations. And we’re going to
continue training the model on this new data set of conversa-
tions.

41The reader may wonder: Does the post-training stage still aim to
improve the weights (the parameters)? Or is it a new kind of process?

Here is Perplexity’s answer: The post-training stage in machine learn-
ing and AI does aim to further improve the model’s weights (the pa-



66 Large Language Models

What happens is that the model will very rapidly adjust
and will learn the statistics — or the patterns — of how this
assistant responds to human queries.

Later during inference we’ll be able to prime the assistant
with a question and have the assistant make a response. It will
be imitating what human labelers would do in that situation,
if that makes sense.

We're going to see examples of that. And it will become a
bit more concrete.

rameters) by refining and specializing them for specific tasks, but it is
distinct from the initial (pre-training) process and encompasses more
than just retraining.

Adjustment of Parameters

During post-training, the model undergoes fine-tuning — meaning ad-
ditional training on smaller, task-specific datasets that directly updates
the model’s weights. This process adapts a generally trained model
to real-world requirements or desired behaviors (for instance, making a
language model follow human instructions or respond appropriately in
a customer service context).

New Processes in Post-Training

Post-training includes specialized techniques beyond simple retraining:

e Supervised Fine-Tuning (SFT): Training the model with curated
examples and preferred outputs to adjust behavior and accuracy.

e Direct Preference Optimization (DPO): Training the model to
favor certain outputs over others by comparing pairs of responses.

e Reinforcement Learning (RL): Gradually updating the model us-
ing feedback scores based on its output, often including human
evaluation or reward functions.

e Optimization Techniques: Quantization and pruning, for exam-
ple, reduce precision or remove unnecessary components for de-
ployment efficiency, not just accuracy.

Post-Training Is an Ongoing Stage

Unlike the large-scale pre-training phase, post-training can be re-
peated as new data, requirements, or feedback emerge — allowing mod-
els to remain effective and adapt to changing tasks or environments. It
bridges the gap between a general-purpose, pretrained model and a spe-
cialized tool suitable for real-world applications, aligning the weights for
the intended use case.

In summary, post-training definitely improves the model’s weights and
parameters, but is considered a broader and more specialized process
than initial pre-training; it enables adaptation, fine-tuning, and opti-
mization according to specific practical needs.




Deep Dive into LLMs like ChatGPT 67

I also want to stress that in this post-training stage, we're
still going to train the model and improve the parameters.

But the pre-training stage can in practice take roughly three
months of training on many thousands of computers, while
the post-training stage will typically be much shorter like
three hours for example.

That’s because the data set of conversations, that we're
going to create here manually, is much much smaller than the
data set of text on the internet. And so this training will be
very short.

But fundamentally we’re just going to take our base model,
we’re going to continue training using the exact same algo-
rithm, the exact same everything, except we’re swapping out
our initial internet data set for conversations written by hu-
man labelers.

The questions now are: What are these conversations? How
do we represent them? How do we get the model to see con-
versations instead of just raw text?

And then: What are the outcomes of this kind of training?
And what do we get, in a certain psychological sense, when
we talk about the model?

Let’s turn to those questions now.
01:05:00

10 Post-training data (conversations)

Let’s start by talking about the tokenization of conversa-
tions.

Everything in these models has to be turned into tokens
because everything is just about token sequences. So "how do
we turn conversations into token sequences?" is the question.

For that we need to design some kind of encoding. This is
similar to maybe — if you’re familiar with it, but you don’t
have to be — the TCP/IP packet encoding on the internet.
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There are precise rules and protocols for how you represent
information, how everything is structured together so that
you have all this kind of data laid out in a way that is written
out on a paper and that everyone can agree on.

It’s the same thing now happening in LLM: we need some
kind of data structures and we need to have some rules about
how these data structures, like conversations, get encoded and
decoded to and from tokens.

I want to show you how I would recreate the conversation
about "2 + 2" (page 63) in the token space:

Human: "What is 2+27"

Assistant: "2+2 = 4"

Human: "What if it was * instead of +?"
Assistant: "2*2 = 4, same as 2+2!"

If we go to Tiktokenizer, we can take that conversation and
this is how it is represented for the language model

Conversation Protocol / Format

Tiktokenizer spt-do
User What is 2427 X Token count
50
Assistant 242=4 X
User What if it was *2 X

<|im_start|>user<|im_sep|>What is 2+27<|im_end|><|im_s
tart|>assistant<|im_sep|>2+2 = 4<|im_end|><|im_start|>
user<|im_sep|>What if it was x7<|im_end|>

<|im_start|>assistant<|in_sep|>2#2 = 4, same as 2+2!<|
Add message N
im_end|>

<|in_start|>user<|in_sep|>What is 2+27<|im_end|>
<|in_start |>assistant<|in_sep|>2+2 = 4<|im_end|>
<|in_start|>user<|in_sep|>What if it was *?<|in_end|>
<|in_start|>assistant<|in_sep|>2#2 = 4, same as 2+2!<|in_end|>

Assistant 2'2 = 4, same as 2+2! X

200264, 1428, 200266, 4827, 382, 220, 17, 10, 17, 30,
200265, 200264, 173781, 200266, 17, 10, 17, 314, 220,
19, 200265, 200264, 1428, 200266, 4827, 538, 480, 673,
425, 30, 200265, 198, 200264, 173781, 200266, 17, 9, 1
7, 314, 220, 19, 11, 2684, 472, 220, 17, 10, 17, @, 20
0265

Figure 41: Tokenization of a conversation.

Here we are iterating a user and an assistant in this two-
turn conversation. What you're seeing in fig. 41 looks ugly
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but it’s actually relatively simple. The way it gets turned into
a token sequence here at the end [bottom right part of fig. 41]
is a little bit complicated.

But in the end, the conversation between a user and an
assistant is 49 tokens. It is a one-dimensional sequence of 49
tokens. And these are the tokens:

200264, 1428, 200266, 4827, 382, 220, 17, 1@, 17, 30,
200265, 200264, 173781, 200266, 17, 10, 17, 314, 220,
19, 200265, 200264, 1428, 200266, 4827, 538, 480, 673,
425, 30, 200265, 198, 200264, 173781, 200266, 17, 9, 1
7, 314, 220, 19, 11, 2684, 472, 220, 17, 10, 17, @, 20
0265

All the different LLMs will have a slightly different format
or protocol and it’s a little bit of a Wild West right now.

For example GPT-4 does it in the following way (bottom
left part of fig. 41): you have this special token called <|im _start|>.
This is short for "imaginary monologue starts here" It is token
200264.

Then you have to specify whose turn it is. So for example
"user" which is the token 1428.

Then you have "internal monologue separator” (called
<|im_ sep|>, with token 200266).

Then comes the exact question. The seven tokens of the
question are 4827, 382, 220, 17, 10, 17, 30{7]

Then you have to close it (<|im_end|>: token 200265). So
I am at the end of the imaginary monologue.

Thus, the question from a user of "what is 2 plus two?"
ends up being the token sequence 4827, 382, 220, 17, 10, 17,
30, preceded by the token 200266 (<|im _sep|>) and followed
by the token 200265 (<|im end|>).

Then we have a new 200264 (<|im_start|>), followed by
the token for "assistant" (173781), etc.

“>Remember that these are not necessarily exact words, they can be
word + space, space + word, part of word, etc.
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It is important to mention here that <|im_start|> is not a
piece of text. This token <|im_start|> (number 200264) is a
special token that gets added. It’s a new token. Our neural
network had never encountered it during its pre-training. It is
a new token that we create and introduce in the post-training
stage.

These special tokens, like <|im _sep|>, <|im_ start|> etc.,
are introduced and interspersed within the text so that the
model can learn that "Hey this is the start of a turn for...".
Whose turn is it to start? It is the user’s turn to start.

After having specified that it is the user’s turn, our protocol
introduces a <|im_ sep|>.

Then comes the actual question [all tokenized] the user asks.
Then the user ends.

Then it’s a new start of a turn. It is the assistant’s turn
now. Our protocol introduces again a <[im sep|>. Then
what does the assistant say? Well, these are the tokens of
what the assistant says (17,10,17, 314, 220, 19). And the
conversation continues.

So the conversation has now been converted into a sequence
of tokens. This might seem baroque, but it is precise and
makes the sequence easy for the neural network to interpret.
The specific technical details are not important for our pur-
pose.

All 'm trying to show you, in concrete terms, is that our
conversations, which we think of as structured objects, end
up being turned via some encoding into one dimensional se-
quences of tokens.

Because it is a one dimensional sequence of tokens, we can
apply all the toolbox of procedures that we developed before.
We can train a language model on our new sequences of tokens
encoding conversations. We're just predicting the next tokens
in sequences just as before. But now we can represent — that is
to say, encode — specifically conversations and train on them.

Then what does it look like at test time during inference?
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Say we’ve trained a model first on the initial data set of
internet documents, then on these kinds of data sets of con-
versations. And now we want to do inference.

During inference what does this look like [speaker shows
fig. 20, page 28| when you’re on ChatGPT ?

You come to ChatGPT and you have a dialogue. You have
a few turns, like "What is 2 plus 27" "2 plus 2 is four", see
beginning of dialog in fig. 41. And now you issue "What if it
was *7'".

What ends up happening on the servers of OpenAl or some-
thing like that?

To your dialog are added the extra tokens like <|im__start|>,
<|im_ sep|>, etc. structuring it.

Then, they put <|im_start|>Assistant<|im_sep|>. And
this is where they end it, right at the point shown by the
arrow:

<|im_start |>user<|im_sep|>What is 2+27<|im_end|>
<|im_start|>assistant<|im_sep|>2+2 = 4<|im_end|>
<|im_start |>user<|im_sep|>What if it was *?<|im_end|>
<|im_start|>assistant<|im_sep|>

Figure 42: To answer a question, construction of the context which
ChatGPT will continue.

So they construct the context shown in fig. 42.@

And now, to build the answer, they start sampling from the
model [

13Remember, "the context" is the sequence of tokens from which we
want to figure out the next one.

44nSampling", here, means "producing outcomes of random vari-
ables", because the sequential selection of the next tokens, as we saw, is
stochastic. To pick a next token, the model builds first a vector of proba-
bilities (fig. 15, p. 19) the dimension of which is the size of the collection
of possible tokens (including now the extra "structuring tokens").
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It is at this stage that they will go to the model and say:
Okay what is a good sequence completing this context? What
is a good first token? What is a good second token? What is
a good third token?

This is where the LLM takes over and creates a response
like for example:

<|im_start|>user<|im_sep|>What is 2+27<|im_end|>
<|im_start|>assistant<|im_sep|>242 = 4<|im_end|>
<|im_start|>user<|im_sep|=What if it was *?<|im_end|>
<|im_start|=assistant<|im_sep|=242 = 4, same as 2+2!<|im_end|>

Figure 43: Continuation of the context by ChatGPT.

It doesn’t have to be identical to this continuation shown
in fig. 43 [because of the stochastic aspect of the selection of
the next tokens|, but it will have the flavor of this — if this
kind of a conversation was in the data set.

That’s roughly how the protocol works, although the exact
details of this protocol are not important. Again my goal is
just to show you that, after the post-training on conversations
built by human labelers, everything ends up being just a one-
dimensional token sequence.

So we can apply everything we ve already seen in pre-training,
but we’re now training on conversations. And we’re now gen-
erating conversations as well.

Now I would like to turn to what these data sets look like
in practice.

The first paper that I would like to show you, the first effort
in this direction is this paper from OpenAl in 2022:

"Training language models to follow instructions with hu-
man feedback" (https://arxiv.org/pdf/2203.02155)


https://arxiv.org/pdf/2203.02155
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Training language models to follow instructions
with human feedback
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o Abstract
—
. Making language models bigger does not inherently make them better at following

= a user’s intent. For example, large language models can generate outputs that
- are untruthful, toxic, or simply not helpful to the user. In other words, these
" models are not aligned with their users. In this paper, we show an avenue for
— aligning language models with user intent on a wide range of tasks by fine-tuning
o~ with human feedback. Starting with a set of labeler-written prompts and prompts
() submitted through the OpenAl API, we collect a dataset of labeler demonstrations
P of the desired model behavior, which we use to fine-tune GPT-3 using supervised

Figure 44: OpenAl paper called "InstructGPT".

This paper is known in the community as the InstructGPT
paper, or the technique they have developed is called that
way.

This was the first time that OpenAl has talked about how
you can take language models and fine-tune them on conver-
sations. The paper has a number of details that I would like
to take you through.

The first stop I would like to make is in section 3.4 where
they talk about the human contractors that they hired, in
this case from Upwork™ or through Scale Al to construct
these conversations.

There are human labelers involved whose job it is profes-
sionally to create these conversations. These labelers are

“>Upwork is a global online freelancing platform that connects busi-
nesses (or individuals) with independent professionals offering services
such as writing, programming, graphic design, translation, and many
other digital skills.

46Scale Al is a U.S.-based company that provides high-quality data
annotation and labeling services for training and evaluating artificial
intelligence models.
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asked to come up with prompts. Then they are asked to
also complete the ideal assistant responses.

These are the kinds of prompts that people came up with
(from p. 26 of the paper). Remember that these are produced
by human labelers.

A.2.1 Ilustrative user prompts from InstructGPT distribution

Use Case

Example

brainstorming

List five ideas for how to regain enthusiasm for my career

brainstorming

What are some key points I should know when studying Ancient Greece?

brainstorming

What are 4 questions a user might have after reading the instruction manual for a
trash compactor?

{user manual}

1.

Use Case

Example

brainstorming

What are 10 science fiction books I should read next?

classification

Take the following text and rate, on a scale from 1-10, how sarcastic the person
is being (1 = not at all, 10 = extremely sarcastic). Also give an explanation

{text}

Figure 45: Examples of prompts.

We see for instance:

e List five ideas for how to regain enthusiasm for my ca-

reer.

e What are the top 10 science fiction books I should read

next?

e Translate this sentence [text]| to Spanish.

e Translate this sentence [text]| from Spanish.

e Summarize this for a second-grade student: [text].

There are many different types of prompts here. So there’s
many things that the labelers came up with.

They first come up with the prompt and then they also an-
swer that prompt, trying to give the ideal assistant response.



Deep Dive into LLMs like ChatGPT 75

How do they know what is the ideal assistant response that
they should write for these prompts?

When we scroll down the InstructGPT paper, we arrive at
this Ezcerpt of labeling instructions (p. 37 of the paper) that
are given to the human labelers.

Excerpt of labeling instructions on the API prompt distribution

You are given a text-based description of a task, submitted by a user. This task description may be in the form of an explicit
instruction (e.g. “Write a story about a wise frog.”). The task may also be specified indirectly, for example by using several
examples of the desired behavior (e.g. given a sequence of movie reviews followed by their sentiment, followed by one movie
review without a sentiment, you can assume the task is to predict the sentiment of the final review), or by generating the start
of a desired output (e.g. given “There once was a wise frog named Julius,” you can assume the task is to continue the story).

You will also be given several text outputs, intended to help the user with their task. Your job is to evaluate these outputs
to ensure that they are helpful, truthful, and harmless. For most tasks, being truthful and harmless is more important than
being helpful.

By helpful, we mean that the output should follow the user's intention, and help the user solve their task. Some examples of
helpful behavior:

* Writing in clear language.

+ Answering the question they meant to ask, even if they mis-asked it.

* Being sensitive to internationality (e.g. “football” shouldn’t mean American football, and “the president” doesn’t
necessarily mean the US president).

« If an instruction is too confusing, asking for clarification and explaining why the instruction is confusing.

* Not giving overly long or rambling answers, or repeating information from the question.

« Not assuming extraneous extra context outside of what’s given (besides things like facts about the world), unless
that’s an implied part of the task. For example, if asked to “‘write a polite email response to this email: email
body™ the output shouldn’t assume “I can’t make it this time, but am free next weekend.” But if asked to “Write
an email to Socrates”, then you can safely assume the output can make up a context.

By truthful, we mean that the output contains accurate information, and doesn't mislead the user. Some examples of truthful
behavior:

*+ On tasks like summarization, where the output should only use information from input, not making up details that

Figure 46: Instructions to labelers (page 37 of OpenAl paper of
2022 known as the InstructGPT paper).

The company that is developing the large language model
(LLM), like for example OpenAl, writes up labeling instruc-
tions for how the humans should create ideal responses. Fig.
46 shows an excerpt of these kinds of labeling instruction in-
structions given by OpenAl.

On high level, you're asking people to be helpful, truthful
and harmless.

You can pause the video if you'd like to look at the paper
more attentively (time mark 01:12:00).

Again, on a high level: just answer, try to be helpful, try to
be truthful, and don’t answer questions that we don’t want
the system to handle later in ChatGPT.

So the company has prepared labeling instructions to its
labelers. Usually they are not this short. Usually there are
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hundreds of pages. And people have to study them profes-
sionally. Then they write out the ideal assistant responses
following the labeling instructions.

It is a highly labor-intensive human process as described in
the InstructGPT paper

The actual data set for instructing GPT was never released
by OpenAl. But we do have some open source reproductions
that are trying to follow this kind of a setup and collect their
own data.

There are many examples. One I'm familiar with is the
effort of Open Assistant”| from a while back.

These were people on the internet who were asked to create
these conversations similar to what OpenAl did with human
labelers.

meanage_te pareat_i¢ wrer_is created_date text role

Can24672-0101 €3£03¢70- 2630+ 2023-02- preeptex
4594-29¢3- Afa7-27t0- 05734:23290.983374+80:00
GeataTma21d ARL57918

Figure 47: Example of work of human labelers at Open Assitant.

Figure 47 shows an entry of a person who came up with
this prompt:
Can you write a short introduction about the relevance of
the term "monopsony" in economics? Please use examples
related to potential monopsonies in the labour market and
cite relevant research.

Then the same person, or possibly a different person, wrote
up the response (fig. 48).

“TOpen Assistant is an open-source, chat-based artificial intelligence
project designed to create a virtual assistant similar to ChatGPT, but
fully open and crowdsourced.
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Figure 48: Labeler response to the question about monopsony.

So the same person, or a different person, did actually write
out the ideal response.

Then here is an example of how the conversation could con-
tinue: "Now explain it to a dog." You would then try to come
up with a simpler explanation.

All these dialogs or quetion /answer snippets form the labels.
And we end up training on them.

Of course we're not going to have a full coverage of all the
possible questions that the model will encounter at test time
during inference. We can’t possibly cover all the possible
prompts that people are going to be asking in the future.

But if we have a data set of a few of these examples then the
model during training will start to take on this persona of this
helpful truthful harmless assistant. And it’s oll programmed
by example.

So these are all examples of behavior. And if you have con-
versations of these example behaviors ,and you have enough
of them like 100 000, and you train on it, the model starts
to understand the statistical pattern. And it takes on this
personality of this assistant.

It is possible that when you get the exact same question on
monopsony (fig. 47) at test time, the answer will be recited
exactly as what it was in the training set. But the model will
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more likely do something of a similar vibe (= similar style or
feel), and will understand that this is the kind of answer that
you want.

So that’s what we’re doing: we’re programming the system
by example. And the system adopts statistically this persona
of this helpful, truthful, harmless assistant which is somehow
reflected in the labeling instructions that the company wrote
out.

01:15:05

Now I want to show you that the state-of-the-art has pro-
gressed in the last two or three years since the InstructGPT
paper.

In particular it’s not very common for humans to be doing
all the heavy lifting just by themselves anymore.

That’s because we now have language models and these lan-
guage models are helping us create these data sets and con-
versations.

So it is very rare that the people will just write out the
response from scratch. It is a lot more likely that they will
use an existing LLM to come up with an answer which they
will then edit.

There’s many different ways in which LL.Ms have now started
to permeate this post-training stage. LLMs are used perva-
sively to help create these massive data sets of conversations.

UltraChat (https://github.com/thunlp/UltraChat) is an
example of a more modern data set of conversations. It is to a
very large extent synthetic, but I believe there’s some human
involvement — I could be wrong about that.

Usually there will be a little bit of human, but there will be
a huge amount of synthetic help, and this is all constructed in
different ways. UltraChat is just one example of many SFT
(supervised fine-tuning) datasets that currently exist.


https://github.com/thunlp/UltraChat
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The only thing I want to show you is that these data sets
have now millions of conversations (fig. 49).
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Figure 49: Conversations available in SFT datasets.

These conversations are mostly synthetic but they’re prob-
ably edited to some extent by humans. And they span a huge
diversity of sort of areas.

They are fairly extensive artifacts by now. There’s all these
SF'T miztures, as they're called. So you have a mixture of
lots of different types and sources. Tt’s partially synthetic
partially human. Post-training has gone in that direction.

Whatever their origins, we now have SFT (supervised finely
tuned) data sets. They’re made up of conversations. We're
training on them, just like we did before.
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I want to dispel some of the magic that is commonly at-
tached to Al and specifically to talking to an LLMs.

When you go to ChatGPT and you give it a question and
then you hit enter, what is coming back statistically is aligned
with what’s happening in the training set. These training sets
ultimately have their seed in humans following labeling in-
structions[™]

ChatGPT is an assistant capable of engaging in dialogue
with us and can acquire a sort of persona that can be fasci-
nating, if not disturbing. We may have the impression that
we are conversing with a smart, well-educated person.

But what are we actually talking to in ChatGPT? How
should we think about it? Well it’s not coming from some
magical Al It’s coming from something that is statistically
imitating human labelers, whose work comes from human
knowledge set out following labeling instructions written by
these companies.

It’s almost as if you’re asking a human labeler. Imagine
that the answer that is given to you from ChatGPT is some
kind of a simulation of a human labeler. It’s like asking what
would a human labeler say in this kind of a conversation.

This human labeler is not some random person from the
internet; it is an expert hired by a firm — just as in the old
days companies that published paper dictionaries and ency-
clopedias used to do.

For example when you are asking questions about computer
code or programming, the human labelers that would be in-
volved in the creation of these conversation data sets would

“*Note that it is still "magical" that the model can provide such high-
quality answers to all sorts of questions. In a sense, it does reproduce
human texts, like Wikipedia — yet it often improves on them. This is
why some argue that Wikipedia has, in some respects, become outdated.
Reading a Wikipedia article can be tedious and confusing, with excessive
detail in the opening section, while a GPT-generated answer is typically
succinct, direct, suited exactly to what we need.
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usually be educated expert people. In a sense, you’re asking a
question to a simulation of those people. So you’re not talking
to a magical Al you’re talking to an average labeler.@

This average labeler is probably fairly highly skilled, but
you’re talking to an instantaneous simulation of that kind of
a person that would be hired in the construction of these data
sets.

Let me give you one more specific example before we move
on. Let’s go to ChatGPT and write "Recommend top 5 land-
marks to see in Paris" in the context window and hit enter.

Recommend top § bindmarks 10 see i Paris,

@ Paris 15 packod wih Coat LNamMans, But if you want the SDIGIUE Must-2803, heve 3¢ the top
Treec

&
1. Eiffel Tower

The =08t 1imdus. ©Mbd 6f Pars. You Gan 1k the ekvalir o Cimb up 10 the 1econd Noor 1or
sturming views. At night, it sparkies evecy houwr,

2. Louvre Museum

Home 10 the Mora Lisa, Yerus de Milo, ard courtiess masterpieces Even € you dorvt go iraide,
the giass pyramid is worth seeng

3. Notre-Dame Cathedral

Ora of the greatest Gethic catradrals in the workd Whie X's under restoraticn after the 2019 fire,
YOu Can 58 aclimice it Murning LGace ind viait the srea

4. Champs-Elysées & Arc de Triomphe
Walk down this famous avenue and visit the Arc de Triemphe, whiere you can gt another great

BINCAATIC vigw OF Parid.

6. Montmartre & Sacré-Corur

A charming hiltop PHGADOrMGOM With artistic history, 0obbINSLoNe streots, and the beautiful
Basiica of Sacré-Cosur oflering breathtaking views of the city.

¥ you have ectra time, consider sdding Musée d*Orsay (for impressiorist art), Palace of
Versallos (Just outside Paris), or Sainte-Chapolie (@

Figure 50: Top 5 landmarks to see in Paris, according to ChatGPT.

Figure 50 shows ChatGPT answer to our question. How
to think about it? Well, it’s not some kind of magical Al
that has gone out and researched all the landmarks and then
ranked them using its infinite intelligence and wisdom.

What we are getting is a statistical simulation of a labeler
that was hired by OpenAl. You can think of it that way.

4°In the sense of typical or archetypal labeler.
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And if the specific question "Recommend top 5 landmarks
to see in Paris" happened to be in the post-training data set,
somewhere at OpenAl, then we are likely to see an answer
that is very similar to what the human labeler who treated it
wrote down for those five landmarks.

How does the human labeler come up with this information?
Well, they go to the internet and do their own little research
for twenty minutes. And they come up with a list and a
description for each landmark. Therefore if they came up
with the list shown in fig. 50, and this is in the data set, 'll
probably see what they submitted as the correct answer from
the assistant.

Now if this specific query "Recommend top 5 landmarks
to see in Paris" was not part of the post-training data set,
then what I'll get will be little bit more "emergent", because
the model understands that the kinds of landmarks that are
in the training set are usually the prominent landmarks, the
landmarks that people usually want to see, the kinds of land-
marks that are usually very often talked about on the internet,
therefore the landmarks that should be listed in its answer.

Remember, the model already has a lot of knowledge from
its pre-training on the internet. So, it’s probably seen tons of
conversations about Paris, about landmarks, and about the
types of things people like to do or see there. This pre-training
knowledge combines with the supervised fine-tuning data to
produce the kind of imitation responses we see in fig. 50.
That’s generally how you can think about what’s happening
behind the scenes — in this statistical sense.

01:20:30

11 Hallucinations, tool use, knowledge /working
memory

Now, I want to turn to something I like to call “LLM psy-
chology,” which is about the emergent cognitive behavior that
comes out of the way these models are trained.
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The first one I want to talk about is, of course, hallucina-
tions. You might have heard of model hallucinations — that’s
when LLMs make things up, completely fabricating informa-
tion.

It’s actually a significant problem with language model as-
sistants. This issue was pretty bad with early models, from
many year ago. But I think it’s gotten a little better recently
thanks to some medications that I'll explain in a moment.

For now, let’s just try to understand where hallucinations
come from. Here’s a specific example: imagine three conver-
sations you might find in a training set, fig. 51.

Assistant: "Tom Cruise is a famous American actor and producer...

Human: "Who is John Barrasso?"
Assistant: "John Barrasso is American physician and politician..."

Human: "Who is Genghis Khan?"
Assistant: "Genghis Khan was the founder of the Mongol Empire."

[Human: "Who is Tom Cruise?" ]

Figure 51: Three reasonable conversations with the LLM.

Each one sounds reasonable — you could imagine finding
them in the data. For example, someone might ask,

“Who is Tom Cruz?” Well, Tom Cruz is a famous actor
American actor and producer, etc.

"Who is John Barrasso?". He turns out to be a US senator,
for example.

"Who is Genghis Khan?" Well, Genghis Khan was blah,
blah, blah.

This is what your conversations could look like at training
time.

Now the problem with this is that when the human is writ-
ing the correct answer for the assistant, in each one of these
cases, the human either knows who this person is or they re-
search them on the Internet and they come in and they write
this response that has this confident tone of an answer.
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A problem arises when, at test time, you ask for information
about someone who is totally unknown and may not even
exist, fig. 52:

Human: "Who is Orson Kovacs?"
Assistant: 77?

Figure 52: Question that will make the LLM stumble and "hallu-
cinate".

Orson Kovacs is a totally random name that I made up.
This person doesn’t exist as far as I know.

The problem is when we ask "Who is Orson Kovacs?"

The assistant will not just tell you "Oh I don’t know" — even
if the LLM might know somehow, inside its features, inside
its activations, inside of its brain sort of, that this person is
not someone that it is familiar with.

Even if some part of the network knows in some sense that
the correct answer is "Oh I don’t know who this is", it is not
going to be the LLM answer.

The reason is that the model statistically imitates its train-
ing set.

In the training set the questions of the form "Who is blah
blah blah?" are confidently answered with the correct answer.

So it’s going to adopt the style of these answers. And it’s
going to do its best. It will give you statistically the most
likely guess. It will make up stuff.

Pay attention to the fact that these models we just talked
about, they don’t have access to the Internet. They’re not
doing research. These are statistical token tumblers, as I call
them. They are just trying to sample the next token in the
sequence. And this will lead them to basically make up stuff.

Let’s take a look at what this looks like.

I have here what’s called the inference playground from
Hugging Face, see page 4:
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< [+ (!: huggisgface colspaceyhuggirgfaceinitrence-playproundtmodelidz iz Talcon-To-Instruct

= Spaces 0O infexence-playground

SYSTEM
USER Who is Orson Kovacs?

© Add message

Figure 53: https://huggingface.co/spaces/huggingface/
inference-playground?model=tiiuae/falcon-7b-instruct.

I am deliberately choosing a model called Falcon 7B (se-
lected via a drop-down menu on the right of the screen, not
shown in fig. 53), which is an older model from a few years
ago. As a result, it tends to suffer from hallucinations — a
problem that, as I mentioned, has improved significantly in
recent models.

Let’s ask Falcon 7B instruct "Who is Orson Kovacs?" and
click run :

USER Who is Orson Kovacs?

ASSISTANT Orson Kovacs is an American author and science fic-
tion writer. He has written numerous books, including the Hugo Award-
winning story "The Best of All Possible Worlds".

Okay, this is totally false. It’s a hallucination.

Let’s try again. Since these are statistical systems, a re-
sampling may produce another answer.

This time Orson Kovacs is a fictional character from this
1950s TV show...

It’s total bullshit.
Let’s try again : he’s a former minor league baseball player...

Well, the model just doesn’t know. And in three trials it
has given us three different answers, because it doesn’t know.
It’s just sampling using probabilities.


https://huggingface.co/spaces/huggingface/
inference-playground?model=tiiuae/falcon-7b-instruct
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The model starts with the prompt "Who is Orson Kovacs?’,
after which the assistant attempts to answer. Sequentially,
it computes probabilities for the possible next token — refer
back to fig. 15 on page 19 if you need to refresh your memory.

The model is sampling based on the probabilities it com-
putes for the next token. And this produces fanciful results.

Notice, though, that this made-up stuff is actually statisti-
cally consistent with the style of the answers in its training
set.

Yet you and I experienced it as made up factual knowledge.

But keep in mind that the model fundamentally does not
know the answer. It is simply imitating the format of an-
swers, fig. 51. Falcon 7B is not going to go off and search
the Internet for a good answer — it just reproduces patterns
from the conversation data in its training set.

How can we mitigate this 7 For example when we go to
ChatGPT and I enter the prompt "Who is Orson Kovacs?",
I'm now asking the state-of-the-art model from OpenAl. This
model will tell you:

Who is Orson Kovacs?

The name "Orson Kovacs" appears to be a combination of two distinct
individuals: Orson Bean and Ernie Kovacs. Orson Bean (1928-2020)
was an American actor, comedian, and writer known for his appear-
ances on television shows and game shows. Ernie Kovacs (1919-1962)
was an American comedian, actor, and writer recognized for his innova-
tive work in television during the 1950s. They collaborated on various
projects, including appearances in "Mad Magazine" and on "The Tonight
Show."

Additionally, there is a character named Odon Kovacs in the 2000
video game "Hitman: Codename 47." Odon Kovacs is a secondary an-
tagonist and an optional target in the game’s 12th mission, "The Setup."

If you have a specific context or individual in mind regarding "Orson

Kovacs," please provide more details so | can offer more targeted infor-
mation.
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Oh, this model is actually is even smarter than what I was
gonna comment upon! You may have seen flashing briefly
in the video "searching the web". We're going to cover that
later. It’s actually using tools. And it came up with a story
it just got on the fly from the Net. But I want the model not
to do web search.

So let me refresh the ChatGPT page, and enter the same
prompt, specifying too not to use any tool:

Who is Orson Kovacs? Do not use any tool.

There isn’'t a well-known historical or public figure named Orson Ko-
vacs. You might be thinking of Ernie Kovacs, who was a pioneering
American comedian and television personality known for his innovative
and surreal humor. If you were referring to someone else, let me know,
and | can clarify!

This is interesting: even without accessing the Internet to
try and learn more, this model is not going to make up stuff.
It knows that it doesn’t know. And it tells us that it doesn’t
appear to be a person that this model knows.

We have clearly made progress in reducing hallucinations,
even though they remain a significant issue in older models.
Furthermore, it makes perfect sense that we would get these
kinds of answers (hallucinations) if our training set resembles
what is shown in fig. 51, p. 83.

So how do we fix this? [On his screen, the speaker brings
up again Meta’s article "The Llama 3 Herd of Models,” which
he will use to support his coming explanations.| Clearly, we
need some examples in our dataset where the correct response
from the assistant is that the model does not know the answer
to a particular fact.

We only need to have those answers be produced in the
cases where the model actually doesn’t know.

Hence the question becomes: how do we know what the
model knows or doesn’t know?

A possibility is to empirically probe the model to figure out
when the model knows the answer and when it doesn’t know.
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For instance, let’s take a look at how Meta dealt with hal-
lucinations for the Llama 3 series of models. In the article
"The Llama 3 Herd of Models", we can go into hallucinations
which they call here factuality:

4.3.6 Factuality

Hallucinations remain a major challenge for large language models. Models tend to be overconfident, even in
domains where they have little knowledge. Despite these shortcomings, they are often used as knowledge bases,
which can lead to risky outcomes such as the spread of misinformation. While we recognize that factuality
can go beyond hallucinations, we took a hallucination-first approach here.

@ system

Figure 54: Meta’s dealing with hallucinations.

The authors describe the process Meta uses to interrogate
the model, determining what it knows and what it does not
— in other words, mapping the boundaries of its knowledge.

Next, they add examples to the training set in which, for
facts the model does not know, the correct answer is for the
assistant to state that it does not know. This seems straight-
forward — in principle. At any rate, it goes a long way toward
solving the issue.

The reason it fixes the issue is this. Remember that the
model might actually have a pretty good model of its self
knowledge inside the network. Remember too that we looked
at the network and all these neurons inside the network, fig.
18, p. 24. You might imagine that there’s a neuron some-
where in the network that sort of lights up when the model
is uncertain.

But the problem is that the activation of that neuron is
not currently wired up to trigger the model to actually say in
words that it doesn’t know.
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Thus, even though the internals of the neural network knows
— because there’s some neurons that represent that —, the
model will not surface that. It will instead take its best guess.
So that it sounds confident just like it sees in a training set,
fig. 51, p. 83.

We need to basically interrogate the model and allow it to
say "I don’t know" in the cases that it doesn’t know.

01:27:42

Let me take you through what Meta roughly does, with
an example: Dominik HaSek is the featured article today on
Wikipedia. So I went there randomly, fig. 55.
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champion as a member of the Red Wings, winning his irst one as the starting
goaltender and his second one as the backup.

Hasek was one of the league's most successful goaltenders of the 1990s and early
2000s. From 1993 to 2001, he won six Vezina Trophies, the most under the award's

In 1998 he
I Trophy, the award
1998 Winter Olympics in Nagano, Japan, he led the Czech
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Figure 55: Wikipedia article on Dominik Hagek.

What Meta people do is they take a random document in
a training set, and pick a paragraph. Then they use an LLM
to construct questions about what the paragraph says.

For example I did that with ChatGPT.
The prompt I entered is: "Generate 3 specific, factual ques-

tions based on the paragraph below. In addition to the ques-
tion, also generate the correct answer.", fig. 56.
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o Generate 3 specific, factual questions based on the paragraph
below. In addition to‘ime question, also generate the correct answer.

Dominik HaSek (Czech: ['dominik 'hafek), audio®; born 29 January
1965) is a Czech former ice hockey goaltender who played 16
seasons in the National Hockey League (NHL), mostly for the Buffalo
Sabres. Widely regarded as one of the best goaltenders in history,
Hasek also played for the Chicago Blackhawks, Detroit Red Wings,
and Ottawa Senators in his NHL career before finishing his career in
Europe. While in Buffalo, he became one of the league's finest
goaltenders, earning him the nickname *The Deminator®. His strong
play has been credited with establishing European goaltenders in a
league previously dominated by North Americans.[1] He is a two-
time Stanley Cup champion as a member of the Red Wings, winning
his first one as the starting gealtender and his second ene as the
backup.

1. Question: For which NHL team did Dominik Ha3ek play the majority of his 16-season career?
Answer: Buffalo Sabres

2. Question: How many Stanley Cups did Dominik Hadek win during his career?
Answer: Two

3. Question: What nickname did Dominik Ha3ek earn due to his exceptional goaltending skills?
Answer: The Dominator

PO PV O

Figure 56: Questions generated by ChatGPT about Dominik Hagek.

Large language models are already good enough to create
and reframe such information.

So if the information is in the context window of this LLM,
this request actually works pretty well. It doesn’t have to rely
on its memory. It’s right there in the context window. The
model can reframe that information with fairly high accuracy.

For example it can generate for us questions and their an-
swers, like these [we just repeat what’s shown in fig. 56]:

1. Question: For which NHL team did Dominik Hagek play
the majority of his 16-season career?

Answer: Buffalo Sabres

2. Question: How many Stanley Cups did Dominik Hasek
win during his career?
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Answer: Two

3. Question: What nickname did Dominik Hagek earn due
to his exceptional goaltending skills?

Answer: The Dominator

Now we have some question and answers. We shall interro-
gate the model with the questions.

What we’ll do is: we’ll take our questions and we’ll go to
our model which would be, say, Llama in Meta.

But let’s just interrogate the model Mistral-78-instruct-v0.3
here as an example. That’s another model. We use it within
Hugging Face inference-playground, and we ask it question 1,
fig. 57.

Does this Mistral model know the answer? Let’s take a
look.

“ spaces © inference- playground e Running App i Files @ Community e . @

aaaaaa
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© Addmessage

Figure 57: Question 1 asked to Mistral, and its answer.

Mistral says that HaSek played for the Buffalo Sabres. That’s
right. So the model knows.

The way that we can programmatically decide is to take
the answer from the model, fig. 57, and compare it with the
correct answer, fig 56.

The model are good enough to do this automatically. There’s
no humans involved here.

We can take the answer from the model we want to test
and we can use another LLM-judge to check if it is correct
according to the true answer.
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If it is correct that means that the model we are testing
(here, Mistral) probably knows["7|

What we’re going to do is repeat this maybe a few times —
with the same question.

So okay the model knows about Buffalo Sabres
Let’s try again: ...Buffalo Sabres.
Let’s try one more time: ...Buffalo Sabres.

We asked three times this factual question and three times
the model answered correctly. This discards the possibility
that it is just luck. The model seems to know.@ Everything
is fine.

01:30:00

Let’s try the second question: "How many Stanley Cups
did Dominik Hasek win during his career?"

Again let’s interrogate the model we want to test about
that. And we know that the correct answer is two.

Here the model claims that he won four times which is not
correct. It doesn’t match two.

So the model doesn’t know. It’s making stuff up.

Let’s try again. Here the model again is making stuff up
(see video at time mark 01:30:32).

Let’s try again. Here it says he did not even win during his
career.

So obviously the model doesn’t know.

The way we can programmatically tell again is we interro-
gate the model three times and we compare its answers maybe
three times, five times, whatever we want, to the correct an-
swer.

50Tt may also have answered correctly by sheer luck. That’s a common
problem when testing someone’s knowledge, for instance with a MCQ.
But the text explains how to avoid that problem.

S!Because it did not give a stochastic answer. It consistently answered
Buffalo Sabres.
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If the model doesn’t know, then we find out that the model
doesn’t know the answer to the question.

What we do then is we take this question [which the model
can’t answer correctly because it doesn’t know the answer].
We create a new conversation in the training set. So we’re
going to add a new conversation in the training set.

And when the question is "How many Stanley Cups did he
win?" the answer is "I'm sorry I don’t know" or "I don’t re-
member". That’s the correct answer for this question because
we interrogated the model, and we saw that indeed it doesn’t
know.

If you do this for many different types of questions, in many
different types of documents, you are giving the model an
opportunity — in its training set — to learn to refuse to give
an answer based on its knowledge["?]

If you just have a few examples of that in your training
set the model will know and has the opportunity to learn the
association of this knowledge-based refusal to this internal
neuron somewhere in its network that we presume exists —
and empirically this seems to be probably the case.[ﬂ

In the course of its post-training, the model can learn that
association, that "hey when this neuron of uncertainty is
high" then I actually don’t know and I'm allowed to answer
"I'm sorry but I don’t think I remember this" to the question
I can’t answer.

If you have these examples in your training set, then this is
a large mitigation for hallucination. That’s roughly speaking

52In short, since LLMs only copy or imitate what is in their training
data set, now, having met situations where the answer is "I don’t know",
they will answer that when, probing themselves one way or another,
they see that they don’t know. Note that it is the same thing with the
education of a child: we teach it not to answer when it doesn’t know.

33This leads to a fascinating insight: the model’s vast collection of
parameters does form a representation of the world — but it is not a
spatio-temporal one. Whoever can clarify mathematically the nature
and structure of this non-spatio-temporal representation of the world
will make a big contribution to Al
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why ChatGPT is able to do stuff like this (see its second
answer p. 87) as well.

These are kinds of mitigations that people have implemented.
And they have improved the factuality issue over time.

This was mitigation nr 1 for the hallucinations issue.

Mitigation #1

=> Use model interrogation to discover model's knowledge, and
programmatically augment its training dataset with knowledge-based
refusals in cases where the model doesn't know. E.g.:

[Human: "Who is Orson Kovacs?" ]

Assistant: "I'm sorry, | don't believe | know"

Figure 58: Mitigation nr 1 against hallucinations.

We can actually do much better than that. Instead of just
saying that we don’t know, we can introduce an additional
mitigation nr 2 to give the LLM an opportunity to be factual
and actually answer the question.

Now what do you and I do? If I was to ask you a factual
question and you don’t know, what would you do in order
to answer the question? Well you could go off and do some
search and use the Internet, and you could figure out the
answer, and then tell me what that answer is.

We can do the exact exact same thing with these models.

Think of the knowledge inside the neural network, inside
its billions of parameters, as kind of a vague recollection of
the things that the model has seen during its pre-training
stage a long time ago. Compare that to some information you
read about a month ago. If you keep reading about the same
information, then you will remember it well. Similarly, the
model remembers well what it has seen several times during
its training.

But if it’s something rare, then you probably don’t have
a good recollection of that information. What you and I
can do then is go and look it up. When you go and look
it up, you're refreshing your working memory with informa-
tion. Then you're able to retrieve it, talk about it, etc.
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We need some equivalent procedure allowing the model to
refresh its memory or its recollection. We can do that by
introducing tools for the models.

The way we are going to approach this is that instead of
just answering "Hey I'm sorry I don’t know", we can attempt
to use tools.

We can create a mechanism by which the language model
can emit special tokens. These are tokens that we're going
to introduce — new tokens. For example here I've introduced
two tokens.

Mitigation #2
=> Allow the model to search!

Human: "Who is Orson Kovacs?"

Assistant: "

<SEARCH_START>Who is Orson Kovacs?<SEARCH_END>
[]

Orson Kovacs appears to be ..."

Figure 59: Mitigation nr 2 against hallucinations.

I've introduced a format or a protocol for how the model is
allowed to use these tokens.

For example instead of just saying "I don’t know", the
model has the option now to emit the special token
<SEARCH_START>.

This is a query that will send the LLM searching on bing.
com in the case of OpenAl, or say Google search or some-
thing like that. It will emit the query and then it will emit
<SEARCH_END>.

Then what will happen is that the program that is sampling
from the model, that is running the inference, when it sees
the special token <SEARCH START >, instead of sampling
the next token in the sequence, it will pause generating tokens
from the model.


bing.com
bing.com
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It will go off and open a session with bing.com. It will
paste the search query into Bing. And it will then get all the
text that it has retrieved from the Internet. It will take that
text. (It will maybe represent it again with some other special
tokens or something like that, but it’s not important.) It will
take that text and copy/paste it here (where there is [...] in
figure 59) into what I tried to show with the brackets. All
that text comes here and when the text comes here it enters
the context window — go back to fig. 15 & 16.

That text from the web search is now inside the context
window that will feed into the neural network — whose fun-
damental function, you remember, is to guess the next token
given a context window, which is a sequence of given tokens.

You should think of the context window as the "working
memory of the model”.

The data in the context window is now directly accessible
by the model. It directly feeds into the neural network. It’s
not anymore a vague recollection (encapsulated in its vast
collection of parameters). It is data that the model has in its
context window and which is immediately available for the
neural network to perform its function — which is, simply and
only, guessing the next token.

When the neural network is sampling the new tokens after-
wards, it can use very easily the data that has been copy/pasted
in the context windows [

That’s roughly how these tools function.

Web search is only one of these tools. We’re going to look at
some of the other tools a bit later. But basically you introduce
new tokens. You introduce some scheme by which the model
can utilize these tokens, and can call these special functions
like web search functions.

>4We see here clearly the explanation of the following paradox: neural
networks do only one thing — they guess ("sample") the next token; yet
we can make them produce intelligent responses which are long sequences
of tokens. The explanation is that we prepare the context window (the
"working memory of the neural network") to make the neural network
produce an intelligent sequence of tokens.


bing.com
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How do you teach the model to correctly use these tools
<SEARCH_ START>, <SEARCH END> etc.?

Again, you do that through training sets. We need to have
a bunch of data and a bunch of conversations that show the
model by example how to use web search. What are the
settings where you are using the search? What does that
look like? And here’s by example how you start a search and
the search etc. (fig. 59).

If you have a few thousand examples of that in your training
set, the model will do a pretty good job of understanding how
this tool works. It will know how to structure its queries.

Of course because of the pre-training data set and the un-
derstanding of the world it gave the model, the model already
kind of understands what a web search is. It has a pretty good
"native understanding" of what kind of stuff is a good search
query. So all that works. You just need to insert a few ex-
amples in the post-training set to show the model how to use
this new tool. Then it can lean on it to retrieve information
and put it in the context window.

That’s equivalent to you and I looking something up on the
Net or in a library to learn or refresh our memory. Indeed,
once it is in the context window of the neural network, it is
in the working memory and it is very easy to manipulate and
access.

That’s what we saw a few minutes ago when I was search-
ing on ChatGPT for who is Orson Kovacs: the ChatGPT
language model decided that this is some kind of little known
individual or something like that. And instead of giving me
an answer from its memory, it decided that it would sample
(here meaning, insert) a special token that is going to do web
search.

We saw a message briefly flash announcing that the LLM
was going to be "using the web tool" or something like that.
So it briefly said that and then we waited for like two seconds
and then it generated this:
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Who is Orson Kovacs?

5} The name “Orson Kovacs" appears to be a combination of two distinet individuals: Orson Bean
and Ernie Kovacs. Orson Bean (1928-2020) was an American acter, comedian, and writer known
for his appearances on television shows and game shows. Ernie Kovacs (1919-1962) was an
American comedian, actor, and writer recognized for his innovative work in television during the
1950s. They collaborated en various projects, including appearances in "Mad Magazine" and on
“The Tonight Show.™  tswsioac
Additionally, there is a character named Odon Kovacs in the 2000 video game "Hitman: Codename
47." Odon Kovacsisa dary ar ist and an optional target in the game's 12th mission,
"The Setup.”  vuuss rasoouoou

If you have a specific context or individual in mind regarding "Orson Kovacs,” please provide more
details so | can offer more targeted information.

Sources WE

e O PV

Figure 60: ChatGPT search on the fly on Orson Kovacs. Notice
that its answer mentions sources.

You see how it’s creating references here (fig. 60). It’s
citing sources.

What happened here is: it went off; it did a web search; it
found these sources and these URLs (URLs are shown on the
right of the screen — not shown on fig. 60)). And the text
of these web pages was all stuffed in between tags (special
tokens) in its context window. It’s not showing here (in fig.
60) but it’s basically stuffed as text in its memory (where
there is [...] in fig. 59).

Now it sees that text. It references it and says: "okay,
it could be these people, citation, it could be those people,
citation", etc.

That’s what happened here, shown in fig. 59 & 60.

That’s also why when I asked "Who is Orson Kovacs?",
I could also add "don’t use any tools". That’s enough to
convince ChatGPT to not use tools and just use its memory
and its recollection.

I also asked ChatGPT: "How many Stanley Cups did Do-
minik HaSek win during his career?" And ChatGPT actually
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decided that it knows the answer. And it has the confidence
to say that he won twice, in 2002 and 2008.[5_5]

It just relied on its memory because presumably it has
enough confidence in its weights, in it parameters and activa-
tions, that this is retrievable just from what it already knows
[which we can call its "long term memory", as opposed to its
"working memory"].

You can also, conversely, impose to use web search to make
sure. Then for the same query, it actually goes off, and it
searches, and then it finds a bunch of sources, it finds all this
(fig. 61). All of this stuff gets copy/pasted in the prompt:

How many Stankey Cups i Dominik Hadek win during his career?

Use web search 1o make sare.

@  Demink Hadek wen v Starskey Cups during his Cacoer, bith with e Dotrot Red Wiegs. Ho
sncured his first championship in 2002 a5 the starting gosliendee and His second in 2008 35 © rrmncacon
backup. crrieik Matek | NHL Hall f Farre Goaitender -
Betenica

Saurces W

3 rimrios
Domieik Habek Facts foe Kids.

Figure 61: ChatGPT search on the web to answer "How many
Stanley Cups did Dominik HaSek win during his career?".

Then it tells us two again and gives sources. It mentions
the Wikipedia article, which is the source of this information
for us as well.

This is how modern LLMs sometimes do a web search before
answering a question. The model determines when to search.
And when it is the case, we saw how the tool works.

This is an additional kind of mitigation for hallucinations
and factuality.

I want to stress one more time this very important sort of
psychology point:

35 Even though the speaker didn’t add "don’t use tools" we know that
ChatGPT didn’t do a search, because in its answer it doesn’t cite any
source.



100 Large Language Models

Knowledge in the parameters of the neural network is a
vague recollection.

The knowledge in the tokens that make up the context win-
dow 1s the working memory.

It is similar to how it works for us in our brain. The stuff
we remember [vaguely]| is our parameters. And the stuff that
we just experienced a few seconds or minutes ago, you can
view it as being in our context window. This context window
is being built up as you have a conscious experience around
you.

This has a bunch of implications also for our use of LLMs
in practice.

For example I can go to ChatGPT and ask: "Can you sum-
marize chapter one of Jane Austin’s Pride and Prejudice?"

This is a perfectly fine prompt. ChatGPT actually does
something relatively reasonable, fig. 62.

& Can you summarize for me Chapter 1 of Jane Austen's Pride and
Prejudice?

5] Sure! Chapter 1 of Pride and Prejudice is famous for its iconic opening line:
“It is a truth universally acknowledged, that a single man in possession of a good fortune, must be
in want of a wife.”
The chapter intreduces Mr. and Mrs. Bennet, a married couple with five unmarried daughters. Mrs.
Bennet is eager to see her daughters married off to wealthy men, and she excitedly tells her
husband about a new arrival in their neighborhood—Mr. Bingley, a wealthy and eligible bachelor
who has just taken residence at Netherfield Park.
Mrs. Bennet insists that Mr. Bennet must visit Mr. Bingley to make their acquaintance, as she sees
him as a potential suitor for one of their daughters. Mr. Bennet, who is witly and sarcastic, teases
his wife by pretending to be indifferent to the matter, though it is revealed at the end of the
chapter that he has already visited Mr. Bingley.
This short but lively chapter sets up the novel's themes of marriage, social status, and the
humorous contrast between Mr. and Mrs. Bennet's personalities.

PO PY O

Figure 62: ChatGPT 40 answer to the prompt "Can you summarize
for me Chapter 1 of Jane Austen’s Pride and Prejudice?"
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The reason it does a reasonable job [without mentioning any
source| is because ChatGPT has a pretty good recollection of
a famous work like Pride and Prejudice. 1t has probably seen
a ton of stuff about it. There are probably forums about this
book. It has probably read versions of the book.

It remembers because even if the text, or a good summary,
was not in its training set, it has enough stuff in its "long
term memory" about it. If you've read this or articles about
it, you’d kind of have a recollection enough to actually say all
this, fig. 62.

However, usually when I actually interact with LLMs and
I want them to recall specific things, it always works better
if you give it to them [as attached references that go into the
context they will work with].

Therefore I think a much better prompt [than the one in
fig. 62] would be something like this "Can you summarize for
me Chapter 1 of Jane Austen’s Pride and Prejudice? 1 am
attaching it below for your reference."

What can | help with?

Can you summacizg for me Chapter 1of Jand Austen's Pride and Prejudice? | am attaching it Y d
btlow 10F your roferencd

Chagter 1
It is a truth universaly acinowhtdped, that a singld man in posteisicn of a gocd fortuse, Mt
be inwan of a wfe.

However itthe knoan the feelngs of views of Duch a man may be on his first entering a
nighbourhosd, this tryth is 30 well food i the minds of the surrounding famiies, that he is

0Sa [+

Figure 63: Improved prompt to get a summary of chapter 1 of
Pride and Prejudice. We now put the entire chapter 1 into the
context window of the LLM.
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I found the chapter on the Internet, and copy/pasted it
into the context window. I do that because when it’s in the
context window, the model doesn’t have to recall it, it has
direct access to it.

Then the summary can be expected to be of significantly
higher quality than the summary shown in fig. 62, because
the chapter was directly available to the model.

I think you and I would work in the same way. You would
produce a much better summary if you had reread this chapter
just before you had to summarize it.

That’s what’s happening here or the equivalent of it.
01:41:45

12 Knowledge of self

The next sort of psychological quirk I'd like to talk about
briefly is that of the knowledge of self.

What I often see on the Internet is people asking LLMs
questions like "What model are you and who built you?"

Such a question is somewhat nonsensical. The reason I say
that is that when I try to explain to someone the fundamentals
under the hood of an LLM, the first point I stress is that this
thing is not a person — it is just a machine. It doesn’t even
have a persistent existence in any way.

An LLM is just a bunch of mathematical processes operat-
ing over tokens. Any appearance of "intelligence" or mean-
ing emerges from these underlying numerical processes — not
from any actual sentience or intentionalityP|

It does that for every single person interacting with the
LLM. It builds up a conversation in a context window. At
the end of the interaction everything is deleted.

%Modern LLMs can be fascinating because they seem to have a per-
sona. It’s easy to imagine we're talking to an '"intelligent being" or
"artificial intelligence." Still, it’s worth remembering from time to time
that we’re interacting with a kind of "super screwdriver"—just a ma-
chine, like our juicer in the kitchen, only much more sophisticated.
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This entity is restarted from scratch with every new con-
versation, if that makes sense.

It has no persistent self. It has no sense of self. It’s a
token tumbler. And it follows the statistical regularities of its
training set.

Asking an LLM questions like "What model are you?" or
"Who built you?" leads to random, inconsistent, or irrelevant
answers by default. That’s because, before such models are
fine-tuned with special instruction data (like RLHF or system
prompts — we will see some of these techniques later), they
have no true self-concept or memory of their history. As they
are programmed to do, they simply try to imitate patterns
from their training data, and that produces random speech.

Let’s pick for example the Falcon-7B-instruct model, which
is a fairly old mode]E], and let’s see what it tells us.

[Speaker runs Falcon-7B-instruct within Hugging Face inference-
playground.|

It’s evading the question: "talented engineers and develop-

ers...". Here it says "I was built by OpenAl based on the

GPT-3 model"...
It’s totally making stuff up![ﬂ

Now the [claimed] fact that it’s built by OpenAl here, I
think a lot of people would take this as evidence that this

*"The original Falcon models (Falcon 7B and Falcon 40B) were first
released in May 2023.

5The Falcon series of large langnage models was developed by the
Technology Innovation Institute (TII) located in Abu Dhabi, United
Arab Emirates.

The key leaders in the development of the Falcon family of models,
including Falcon 7B, at the Technology Innovation Institute (TII) in
Abu Dhabi, are Dr. Ebtesam Almazrouei and Dr. Ray O. Johnson.

The work on the Falcon models was a collaborative effort involving a
large team of researchers, scientists, and engineers within the TII.

The birth of Falcon is part of the major contemporary breakthroughs
in AT: the availability of massive computing power (cloud), a globally re-
cruited talent pool (some from Hugging Face, AI21 Labs, and academia),
and an ambitious political strategy aimed at offering powerful open
source models beyond the closed circle of the tech giants.
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model was somehow trained on OpenAl data or something
like that. I don’t actually think that it is necessarily true.

The reason for getting this mention of OpenAl is that if
you don’t explicitly program the model to answer these kinds
of questions, then what you’re gonna get is its statistical best
guess at what is a good answer, based on its training stages,
and this leads the model to claim that it was built by OpenAl.

This Falcon-7B-instruct model had a SFT [supervised fine-
tuning|] data mixture of conversations, see fig. 51, p. 83.
During the fine-tuning, the model understands, as it’s training
on this data, that it’s taking on this personality of a helpful
assistant.

It wasn’t told exactly what label to apply to self. It just
kind of is taking on this persona of a helpful assistant.

Remember that the pre-training stage used documents from
the entire Internet. And ChatGPT and OpenAl are very
prominent in these documents.

What’s happening here [fig. 64| is that this is just its hal-
lucinated label for what it is. This is its self-identity — that it
was built by OpenAl based on the GPT-3 model.

% spaces © inference-playground App  + Files & Communi v@ i, @

SYSTEM USER What model are you? Who built you?

ASSISTANT 1 was built by Openal, based on the GPT-3 model.
User

L}

© Add messa ge

Figure 64: Falcon thinks it was built by OpenAl.

It’s only saying that because there’s a ton of data on the
internet of answers like this that are actually coming from
OpenAl from ChatGPT. So that is its label for what it is.
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Now as a developer, if you have an LLM model, you can
override it. And there are a few ways to do that.

For example let me show the OIMO model from Allen AIE

This is one LLM. It’s not a top tier LLM or anything like
that, but I like it because it is fully open source.

The paper for OIMO and everything else is completely fully
open source which is nice. It can be found at

https://arxiv.org/pdf/2402.00838

Figure 65 shows its SF'T' mixture. This is the data mixture
of the fine-tuning. It is the conversations data.

The OLMo v2 SFT miture was used to train the QLMo models. It containg 939,344 samples from the fellowing sets:

CoCoNot (ODC-BY-1.0), 10,953 prompts (Brahman ct al, 2024)
L}

FLAN v2 via 242-2da0t -dee /f1an

&4, 83,982 prompts (Longpre et al, 2023)
Ko Robots (CC-BY-NC-4.0), 9,500 prompts (Rajani et al. 2023)

QomAsHitant Guanaco (Apache 2.0), 7,132 pcompts (Kopf ¢t al., 2024)

Tuly 3 Persena MATH (ODC-8Y-1.0), 149,960 prompts

Tuly 2 Porsona GSM (ODC-BY-1.0), 49,980 prompts

Tuly 3 Porcony Python (ODC-BY-1.0), 34,559 prompts

Tuly 3 Persona Alpsbea (COC-8Y-1.0), 20,000 prompts

Tulu 3 Persona IF (GDC-6Y-1.0),

080 promipts
NuminaMath-TIR (Apache 2.0), 64,312 prompts (Beeching ot al 2024)
Tuly 3 WikdGuardNix (Apache 2.0}, 50,000 prompts (Han ot al, 2024)

Tuly 2 Wild Rilbreak (CDC-8Y-1.0), 50,000 prompts (Wildteaming, 2024)

Figure 65: SFT mixture for the OIMO model (part of it).

The way they are solving it for the OIMO model is we see
that there’s a bunch of stuff in the mixture and there’s a total
of 1 million conversations here. But here we have OIMO-2-
hard-coded.

If we go there,fig. 65, we see that this is 240 conversations.

P0IMO is a fully open-source large language model developed by
the Allen Institute for AI (AI2), designed to push the boundaries of
transparent and reproducible NLP research.
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“ Hugging Face Models - Datasets ¥ Spe

e olmo-2-hard-coded ke w @ A2

8 Text } json <1K # Datasets R pandas @ Croissant & ccby4.0

Dataset card Viewer Files and versions Community

8 Dataset Viewer

Figure 66: Conversations use for OIMO-2-hard-coded.

Look at these 240 conversations. They’re hardcoded: "Tell
me about yourself" says user and then the assistant says "I'm
OIMO an open language model developed by Ai2 (Allen In-
stitute for Artificial Intelligence) etc. T'm here to help blah
blah blah". "What is your name?", "My name is OIMO...",
"The OIMO project is an effort..."

These are all kinds of prepared hardcoded questions about
OIMO 2 and the correct answers to give in these cases.

If you take 240 questions like this or conversations, put
them into your training set, and fine-tune with it, then the
model will actually be expected to parrot this stuff later.

If you don’t give it this, then it will probably answer "I'm
ChatGPT by OpenAI".

There’s one more way to sometimes do this: it is that in
these conversations (fig. 51), where you have turns between
human and assistant, sometimes there’s a special message
called system message at the very beginning of the conver-
sation.

So it’s not just between human and assistant, there’s a sys-
tem [that sometimes takes part in the conversations|. In the
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system message, you can actually hardcode and remind the
model that "Hey you are a model developed by OpenAl and
your name is GPT—40@, and you were trained on this date
and your knowledge cut off [date| is this".

It’s like document the model a little bit. Then it is inserted
into to your conversations. So when you go on ChatGPT you
see a blank page but actually the system message is kind of
like hidden in there. And those tokens are in the context
window.

Those are the two ways to program the models to talk about
themselves: either it’s done through data like this, fig. 66,
or it’s done through system message and things like that:
invisible tokens that are in the context window and remind
the model of its identity.

But it’s all just cooked up and bolted on in some in some
way. It’s not actually like really deeply there in any real sense,
as it would be for a human.

01:46:55

13 Models need tokens to think

I want to now continue to the next section which deals with
the computational capabilities, or like I should say, the native
computational capabilities of these models in problem solving
scenarios.

In particular we have to be very careful with these models
when we construct our examples of conversations.

Human: "What is 2+27"

Assistant: "2+2 = 4"

Human: "What if it was * instead of +7"
Assistant: "2*2 = 4, same as 2+2!"

60The ’0’ stands for ’omni’.
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Human: "Why is the sky blue?"

Assistant: "Because of Rayleigh scattering."
Human: "Wow!"

Assistant: "Indeed! Let me know if | can help
with anything else :)"

Figure 67: Examples of conversations.

There’s a lot of sharp edges here that are hallucinative (=
prone to lead to hallucinations) sets of words.

They're interesting to look at when we consider how these
models think.

Consider the following prompt from a human, figure 68, and
suppose that we are building a conversation to enter into our
training set of conversations. We're going to train the model
on this. We’re teaching it how to solve simple math problems

The prompt is: "Emily buys 3 apples and 2 oranges. Each
orange costs $2. The total cost of all the fruits is $13. What
is the cost of apples?" — very simple math question.

Two possible answers are shown below:

Medels need tokens to think

Human: "Emily buys 3 apples and 2 oranges. Each
orange costs $2. The total cost of all the fruit is $13.
What is the cost of apples?"

Assistant: "The answer is $3. This is Assistant: "The total cost of the
because 2 oranges at $2 are $4 total. oranges is $4. 13 - 4 = 9, the cost of
So the 3 apples cost $9, and therefore the 3 apples is $9. 9/3 = 3, so each
each apple is 9/3 = $3". apple costs $3. The answer is $3".

Figure 68: Math problem. And two possible correct solutions that
we can train ChatGPT with.

Both are correct answers yielding the solution $3 per apple.
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But one of these two is a significantly better answer for the
assistant than the other.

If I were a data labeler and I were creating one of these,
one would be a really terrible answer for the assistant and
the other would be okay.

You may want to pause the video (at time mark 01:48:06)
and think through why one of these two answers is a signifi-
cantly better answer than the other.

If you use the bad one — keeping in mind, once again, that
both are mathematically correct — your model will actually
be really bad at solving math problems. It would have bad
outcomes. This is something that you would be careful with
in your labeling documentations when you are training people
to create the ideal responses for the assistant.

The key to understand the point is to realize and remember
that when the models are training and also inferencing, they
are working with a one dimensional sequence of tokens from
left to right. This is the picture that I often have in my mind:

next token probabilities

T

<

T

L m
|l

T
000000

tokens sequence

Figure 69: Sequential process of guessing the next token.
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I imagine the token sequence evolving from left to right.@

To always produce the next token in a sequence, we are feed-
ing all these tokens into the neural network. This neural net-
work then [given the sequence of tokens already established]
gives the probabilities for the next token in the sequence.

So the picture in fig. 69 is the same picture as we saw before
(fig. 18, page 24) — just upside down. It comes from the web
demo that I showed you before.

This is the calculation that takes the input tokens here on
the top [speaker is commenting on fig. 18] and performs these
operations of all these neurons and gives you the answer for
the probabilities of what comes next. The important thing to
realize is that there’s a finite number of layers of computation
that happen here. For example, the nanoGPT model (shown
in fig. 18 and 69) has only three layers of what are called
attention and MLPs (multi-layer perceptrons).

A typical modern state-of-the-art network would have more
like 100 layers.

But there’s only 100 layers of computation to go from the
previous token sequence to the vector of probabilities for the
next token. There’s a finite amount of computation that hap-
pens here for every single token. You should think of this as
a very small amount of computation. This amount of com-
putation is almost roughly fixed for every single token in this
sequence.

That’s not actually fully true because the more tokens you
feed in the the more expensive this forward pass will be of
this neural network. But not by much.

So you should think of this, and I think it’s a good model to
have in mind. This is a fixed amount of compute that’s going
to happen in this box [speaker shows the nanoGPT in fig. 69]
for every single one of these tokens [the tokens computed one
after the other on the horizontal line of fig. 69].

%'For a good understanding (i.e. a good model in your mind), think
of the tokens as fixed on the horizontal axis, but a new one is added on
the right, produced by the neural net, and then a new one, etc.
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This amount of compute cannot possibly be too big because
there’s not that many layers that are going from the top to
bottom here [speaker shows now fig. 18]. There’s not that
much computationally that will happen.

Therefore you can’t imagine the model doing arbitrary large
computation in a single forward pass to get a single token.

What that means is that we actually have to distribute our
reasoning and our computation across many tokens, because
every single token is only spending a finite amount of compu-
tation on it.

We want to distribute the computation across many tokens
and we can’t have too much computation or expect too much
computation out of the model in any single individual token,
because there’s only so much computation that happens per
token. It’s a roughly fixed amount of computation.

That is why, when looking at the two correct answers (from
a mathematical point of view) in figure 68, the answer on the
left is significantly worse than that on the right.

The reason for that is: imagine going from left to right on
the left part of fig. 68. I copy/pasted it in Tiktokenizer. "The
answer is $3. This is because...", fig. 70.

Tiktokenizer 00K base

The answer i $3. This is because 2 oranges at $2 are $4 Token count
total. So the 3 apples cost $9, and therefore each apple is 41
9/3 = $3

The answer is $3. This is because 2 oranges at $2 are
$4 total. So the 3 apples cost $9, and therefore each
apple is 9/3 = $3

791, 4320, 374, 400, 18, 13, 1115, 374, 1606, 220, 17,
85138, 520, 400, 17, 527, 400, 19, 2860, 13, 2100, 27
9, 220, 18, 41776, 2853, 4ee, 24, 11, 323, 9093, 1855,
24149, 374, 220, 24, 14, 18, 284, 400, 18

Figure 70: Tokenization of the bad answer.
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Imagine the model — to produce its solution — having to go
from left to right emitting the tokens shown in fig. 70, one
at a time. It has to say or we're expecting it to say: "The"
"answer" " is" "space dollar sign” "3" "." etc. Thus we're
expecting it to very soon cram all of the computation of the
problem into the single token representing "3" (which is token
18).

It has very soon to emit the correct answer: 3.

Then, once it has emitted the answer 3, we're expecting it
to emit sequentially all the tokens that follow: "." " This" "
is" " because" " " "2" " oranges", etc.

But at this point we’ve already produced the answer, and
it’s already in the context window for all these tokens that
follow.

Anything following the number 3 (token 18), in fig. 70, is
just kind of post hoc justification of why this is the answer,
because the answer is already created — it’s already in the
token window.

The solution "3" is not calculated progressively in the course
of the whole sequence of tokens.

If you are answering the question directly and immediately
you are training the model to try to guess the answer in a
single token.

That is not going to work well, because of the finite amount
of computation that happens per token.

That’s why the answer on the right is significantly better,
because we are distributing this computation across the an-
swer. We're actually getting the model to sort of slowly come
to the answer. From the left to right, we’re getting interme-
diate results. We're saying "okay the total cost of oranges is
45013 —-41is9.

We’re creating intermediate calculations. Each one of these
calculations is by itself not that expensive. We’re actually
guessing a little bit the difficulty that the model is capable of
in any single one of these individual tokens.
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There can never be too much work in any one of these tokens
computationally, because then the model won’t be able to do
that later at test time.

So we’re teaching the model here to spread out its reasoning
and to spread out its computation over the tokens.

In this way it only has very simple problems in each token.
And they can add up. And then by the time it’s near the
end, it has all the previous results in its working memory.

And it’s much easier for it to determine that the answer
is..., and here it is 3.@

So this is a significantly better label for our computation.

The left solution would be really bad, because it is teaching
the model to try to do all the computation in a single token.
It’s really bad.

That’s an interesting thing to keep in mind in construct-
ing your prompts. Usually you don’t have to think about it
explicitly because the people at OpenAl have labelers that ac-
tually worry about this and they make sure that the answers
are spread out.

So actually OpenAl will do the right thing, fig. 71.

52Notice though that we are here in the realm of neural networks, not
the realm of programming math problems with a computer language like
Fortran, or Javascript, or Python.

One can say that computer science encompasses two different domains:
that of programming, yielding rigorous indisputable results (if the pro-
gram has no bug); and that of neural networks which discover struc-
tures, emergent patterns, things that are not directly visible nor even
suspected. Yet neural networks are programmed using the techniques of
the first domain.

When we ask Python to solve Emily’s question, "Emily buy 3 apples
and 2 oranges. Each orange costs $2. The total cost of all the fruits is
$13. What is the cost of apples?", we structure a program to rigorously
compute the solution (13-4 =19, 9/3 = 3).

When we use an LLM to solve the problem, it is not a program that
solves it rigorously; it is a program that sort of guesses or imitates a
calculation from its training.

In short: LLM are not designed to solve math problems. We can make
them look like they solve simple math problems, but when the problems
are tougher they systematically fail.
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Emily buys 3 apples and 2 cranges. Each orange costs $2. The total
cost of all the fruit is $13. What is the cost of apples?

@ Let's define the variables:
+ Letz be the cost of one apple.
« Each orange costs $2.
« Emily buys 3 apples and 2 oranges,

« The total costis $13.

Now, we can set up the equation:

3r+2(2) =13
Simplify:
3z+4=13
Subtract 4 from both sides:
3z=9
Divide by 3:
z=3

So, the cost of one apple is $3.

OO PY O
Figure 71: OpenAl solving correctly Emily problemm

So when I ask this question to ChatGPT, it’s actually going
to go very slowly. It’s going to be like: "Okay let’s define our
variables, set up the equation...", and it’s kind of creating all
these intermediate results.

These intermediate results are not for you, these are for the
model.

If the model is not creating these intermediate results for
itself, it’s not going to be able to reach 3.

53But keep in mind, it is only imitating a math proof. It is not a
math proof computed by a computer program correctly written. The
difference may appear thin; it is a deep question. When does a student
give a correct answer because it has done the correct algebraic analysis
and reasoning, and when is it only imitating a proof it doesn’t really
understand?
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I also wanted to show you that it’s possible to be a bit
tough on the model and make it stumble. We can simply ask
questions that will be too difficult, or will confuse it.

As an example I said I gave it the exact same prompt and I
said: "Answer the question in a single token just immediately
give me the answer nothing else".

It turns out that for this simple prompt here, it actually was
able to do it in single go — well, actually two tokens because
the dollar sign is its own token.

Emily buys 3 apples and 2 cranges. Each crange costs $2. The total
cost of all the fruit is $13. What is the cost of apples?

Answer the question in a single token. i.e. immediately just give me
the answer and nothing else.

Figure 72: OpenAl solving correctly Emily problem, even when we
impose to it to solve it very quickly, without intermediate steps.

This model didn’t give me a single token, it gave me two
tokens. But it still produced the correct answer. And it did
that in a single forward pass of the network. That’s because
the numbers in Emily problem, I think, are very simple.

So now [ made it a bit more difficult to be a bit mean to
the model. 1 said: "Emily buys 23 apples and 177 oranges.
Each orange costs $4. The total cost of all the fruit is $869.
What is the cost of each apple? Answer the question in a
single token. i.e. immediately just give me the answer and
nothing else."

I just made the numbers a bit bigger, and I'm making the
problem harder for the model. I’'m asking it to do more com-
putation in a single token. I asked the same thing. Now it
answered 5 — which is not correct.
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So the model failed to do all of this calculation in a single
forward pass of the network.

It failed to go from the input tokens and then in a single
forward pass of the network single produce the result.

And then I said : "Okay now don’t worry about the token
limit and just solve the problem as usual”.

Ok now work out the problem normally, you can use as many tokens
as you like,

&  Levs define variables and set up the equation:
+ Let x be the cost of one apple.
« Each orange ¢osts $4.
« Emily buys 23 apples and 177 oranges.

+ The total cost of all the fruit is $869.

Step 1: er'te the total cost equation

23z + 177(4) = 869

Step 2: Simplify
23z + 708 = 869
Step 3: Solve for ¢
23z = 869 — 708
23z = 161
_ 161
X1
=T

Final Answer:

The cost of each apple is $7.

PO O PV Ty

Figure 73: ChatGPT solves correctly the problem if we leave it use
as many steps as it needs.

This times, it goes through all the intermediate results, it
simplifies. And every one of these intermediate results here,
and intermediate calculations, is much easier for the model.

It’s not too much work per token. All of the tokens here
are correct. And it arrives at the correct solution which is 7.
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It couldn’t squeeze all the intermediate steps into a single
forward passive network.

So I think that it is a cute example, and something to think
about. It’s "elucidative" in terms of how these models work.

The last thing that I would say on this topic is that if I were
in practice trying to actually solve this in my day-to-day life,
I might not trust that the model did all the intermediate
calculations correctly here, fig. 73.

Probably what I'd do is something like this: I would come
here [the main question box of ChatGPT where we put the
prompt "Emily buys 23 apples and 177 oranges. Each orange
costs $4. The total cost of all the fruit is $869. What is the
cost of each apple?"] and T would add: "Use code." That’s
because code is one of the possible tools that ChatGPT can
use.

Instead of doing the sort of "mental arithmetic" displayed in
fig.73, the model will proceed differently. I don’t fully trust
the "mental arithmetic" shown. Especially if the numbers
get really big, there’s no guarantee that the model will do
it correctly. Any one of these intermediates steps might in

principle fail@

54The problem is that we don’t ask the AI to do real math. The AI’s
just "guessing" the steps and the solution from its training. Today, 1st
October 2025, the transcriber asked various Als to solve the following
classical problem: Two ladders, of respectively 3 m and 4 m, in a corridor,
cross 1 m above ground. What is the width of the corridor?

A
OA=4
BD=3
CH=1

find the
value of
oD

(0] H D

ChatGPT, Gemini, Copilot, Anthropic all failed, giving fanciful solu-
tions from 1.4 m to 4 m ! They never gave the correct solution which
is &~ 2,603 m. DeepSeek did arrive at the right solution, but with faulty
intermediate equations ! For the real math solution see for instance
https://lapasserelle.com/documents/echelles.pdf


https://lapasserelle.com/documents/echelles.pdf
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We’re using neural networks to do "mental arithmetic" like
you do in your brain. It might just screw up some of the
intermediate results. It’s actually amazing that it can even
do this kind of mental arithmetic. I don’t think I could do
this in my head but basically the model is sort of "doing it in
its head". And I don’t trust these "calculations".

So I decided to use tools. You can add "Use code" in your
prompt.

Emily buys 23 apples and 177 oranges. Each orange costs $4. The
total cost of all the fruit is $869. What is the cost of each apple?

Use code.

@ Analyzed ~

nun_apples = 23
nun_oranges = 177
cost_per_orange = 4
total_cost = 869

total_orange_cost = num_oranges * cost_per_orange
total_apple_cost = total_cost - total_orange_cost

cost_per_apple = total_apple_cost / nun_apples
cost_per_apple

The cost of each apple is $7. [-)

»OO6 QYO
Figure 74: Telling ChatGPT to use code.

It a special tool. The model can write code and I can in-
spect that this code is correct. The model is no longer relying
on its mental arithmetic. The LLM does "mathematize" the
problem, but once this is done, it is using the Python inter-
preter, which is a very simple programming language, to write
out the code that calculates the result.
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I would personally trust this a lot more, because this came
out of a Python program, which I think has a lot more cor-
rectness guarantees than the mental arithmetic of a language
model.

That’s another hint: if you have these kinds of problems,
you may want to ask the model to use the code interpreter.

And just like we saw with the web search, the model has
a special kind of tokens for calling on Python. It will not
actually generate these tokens from the language model. Tt
will write the program. And then it sends that program to
a different part of the computer that runs that program and
brings back the result.

Then the model gets access to that result and can tell you
that "Okay the cost of each apple is 7". That’s another tool.
And T would recommend that you use this in practice for
yourself. It’s just less error prone, I would say.

That’s why I called this section models need tokens to think:
Distribute your computation across many tokens. Ask models
to create intermediate results. Or whenever you can, lean on
tools and tool use instead of allowing the models to do all
of the stuff in their memory. If they try to do it all in their
memory, I don’t fully trust it, and prefer to use tools whenever
possible.

I want to show you one more example of where this actually
comes up. That’s in counting. Models are not very good at
counting, for the exact same reason: you’re asking for way
too much in a single individual token generation.

Let’s see an example: "How many dots are below 7" And I
put in a bunch of dots.

How many dots are below?

There are 161 dots in your message.

Figure 75: ChatGPT counts 161 dots.
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ChatGPT begin with "There are". Then it just tries to
solve the problem in a single token.

Thus in a single token it has to count the number of dots in
its context window. And it has to do that in the single forward
pass of a network. In a single forward pass of a network, as
we talked about, there’s not that much computation that can
happen in the neural network. Just think of that as being
like very little computation that happens there.

If T look at what the model sees —let’s go to the Tiktokenizer
— it sees this, "How many dots are below?" tokenized in the
top right of fig. 76.

Tiktokenizer ook base

How many dots are below? Token count
n

How many dots are below?

4438, 1690, 32094, 527, 3770, 1980, 43369, 43369, 1697
1, 4095, 62073

Figure 76: What the LLM sees when we enter the prompt shown
in figure 75.

In the bottom right part of the figure, we see the codes
of the tokens. First of all : 4438, 1690, 32094, 527, 3770,
1980, which correspond to "How", " many", " dots", " are",
" belOW”, H?H.

Then it turns out the dots begin to be tokenized in groups
of 20 dots, I think. A group of 20 dots is a single token,
with code 43369. A second group of 20 corresponds to the
repetition of 43369.

Then for some reason the incipient regularity is broken. We
see the codes 16971, 4095, 62073.
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This has to do with the details of Tiktokenizer.

The model basically sees the token ID this, this, this and
so on |groups of 20 tokens|, and then from these token IDs
it’s expected to count the number.

And spoiler alert: it is not 161.

It’s actually T believe 177.

What we can do instead of what’s shown in fig. 757 Sur-
prisingly enough, we can again say "Use code".

You might wonder: "Why should this work?"

It’s actually kind of subtle and kind of interesting.

When I say "Use code", I actually expect this to work. Let’s
see:

How many dots are below?

(5] There are 161 dots in your message.

Use code.

[ Analyzed ~

T I L o e R i T e A e S e P o e
dot_count dots_string.count( }

dot_count
177

The total number of dots in your message is 177, [>-)

OO DY O

Figure 77: Counting again, after the prompt "Use code" has been
entered (in the same conversation).

Okay, 177 is correct.
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It doesn’t look like it, but what happens here is that I've ac-
tually broken down the problem into problems that are easier
for the model.

I know that the model can’t count. It can’t do mental
counting. But I know that the model is pretty good at doing
copy/pasting.

So what’s going on here is when I say use code, it cre-
ates a string in Python for this. And the task of basically
copy/pasting my input, from here to here, is very simple, be-
cause for the model it sees this string of... it sees it as just
these four tokens 43369, 43369, 16971, 4095, or whatever it
is.

So it’s very simple for the model to copy paste those token
IDs, and unpack them into dots here, fig. 77, see the string
of dots on the right of dots_string =.

So it creates this string and then it calls Python routine
dots_string.count("."). And thus it comes up with the cor-

rect answer.

The Python interpreter is doing the counting. It’s not the
models mental arithmetic doing the counting.

It’s again a simple example of "models need tokens to think".
Don’t rely on their mental arithmetic. That’s why also the
models are not very good at counting. If you need them to
do counting tasks, always ask them to lean on the tool "Use
code".

02:01:10

14 Tokenization revisited: models struggle with
spelling and counting

Now the models also have many other little cognitive deficits
here and there. These are sharp edges of the technology to
be aware of over time.

As an example the models are not very good with all kinds
of spelling related tasks. They’re not very good at it.
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I told you that we would go back to tokenization.

The reason for this is that the models don’t see the charac-
ters they see tokens.

Their entire world is made neither of letters nor of words,
but of tokens which are these little text chunks. They don’t
see characters like our eyes do. Hence character level tasks
often fail.

For example, I'm giving it the string "ubiquitous" and I'm
asking the model to print only every third character, starting
with the first one. So we start with U and then we should go
every third character: "g" should be next, and then "t", etc.

[ChatGPT answers : Uiuo. But the correct answer is :
Uqts.]
We see that ChatGPT answer is not correct.

And again my hypothesis is that this is again the mental
arithmetic here that is failing.

Number one: it is failing a little bit.

But number two: I think the more important issue here is
that if we go to Tiktokenizer and we look at "Ubiquitous",
we see that it is three tokens.

Tiktokenizer ook base

Ubiguiteus Teloon court
3

Ubiquitous

50668, 5118, 58855
Figure 78: Tokenizing "Ubiquitous".

You and I see "Ubiquitous" and we can easily access the
individual letters because we clearly see them %]

65In short tokenization creates plenty of problems. Thankfully it also
solves plenty.



124 Large Language Models

When we have it in the working memory of our visual field,
we can really easily index into every third letter. I can do
that task.

But the models don’t have access to the individual letters.
They see "Ubiquitous" as the three tokens shown in fig. 78.

Remember that these models are trained from scratch on
the Internet. The model has to discover how many of all these
different letters are packed into all these different tokens.

The main reason we use tokens is for efficiency.

I think a lot of people are interested to get rid of tokens
entirely. We should really have character level or byte level
models.

But that would create very long sequences and people don’t
know how to deal with that right now [

While we are in the token world, any kind of spelling tasks
are not expected to work very well.

Because T know that models are not good at spelling —
because of tokenization — I can again ask the LLM to lean
on tools.

I can add "Use code" in the conversation, fig. 79. I would
again expect this to work because the task of copy/pasting
"Ubiquitous" into the Python interpreter is much easier.

Then we’re leaning on the Python interpreter to manipulate
the characters of this string.

When I add "Use code", the LLM indexes every third char-
acter of "Ubiquitous".

Its answer is Uqts which looks correct to me, fig. 79.

So again this was an example of spelling related tasks not
working very well.

56Tt’s surprising, because LLMs work effortlessly with vectors that
have millions of components.
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Print buck the foliowing string, but caly print every 3ed character,
starting with the first one.

“Ubkuitous*
S Terevdtic

*Ukso™
Usa code.

tiresult)

L
The cutput is: "Uqes® ()
*O OOy O

Figure 79: "Use code" to manipulate characters.

A famous recent example of a similar problem is how many
"r" are there in "strawberry". It went viral for a while.

Nowadays the models get it correct. They say there are
three "r"s in "strawberry"”. But for a long time all the state-
of-the-art models would insist that there were only two "r'"s

in strawberry.

This caused a lot of ruckus because the following question
naturally comes to mind: "How come the models can be so
brilliant — can even solve math Olympiad questionﬂ —, but
they aren’t able to count "r"s in strawberry?"

5"The idea that LLMs can "solve math Olympiad questions" seems
to be an exaggeration by AI's enthusiasts.

Recent benchmark studies (2025 USAMO and IMO) show that even
the best LLMs today (like Gemini 2.5 Pro, GPT-4, and Grok-4) score
well below medal level on real Olympiad questions, especially when full
proofs and rigorous mathematical reasoning are required.
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The answer again is:
1) the models don’t see characters they see tokens,
2) they are not very good at counting.

Thus here we are combining the difficulty of seeing the char-
acters with the difficulty of counting.

That’s why the models struggled with counting the number
of "r"s in "strawberry”. I think that by now OpenAl may
have hardcoded the answer — I'm not sure what they did —
but the specific query about strawberry now works

So models are not very good at spelling.

There’s a bunch of other little sharp edges. I don’t want to
go into all of them. I just want to show you a few examples
of things to be aware of, when you're using these models in
practice.

I don’t want to provide in this video a comprehensive anal-
ysis of all the ways that the models are falling short. I just
want to make the point that there are some jagged edges here
and there.

We’ve discussed a few of them. We have seen explanations.

But some of them just don’t make sense. They leave you
scratching your head, even if you understand in-depth how
these models work.

Let’s see a good example of that kind.

The models are not very good at very simple questions like
the following one — and it is shocking to a lot of people be-
cause these models are [said to be| able to solve complex math
problems. They can answer PhD grade physics, chemistry, bi-
ology questions much better than I can. But sometimes they
fall short in very simple prompts like this one:

On the 2025 USA Math Olympiad (USAMO), top models scored
only 25%-30% (far below a bronze medal) when evaluated for complete,
human-grade solutions.

LLMs can sometimes produce the final correct numerical answer in
simpler competition problems (AIME-type), but almost always fail to
produce valid, rigorous proofs for Olympiad-level math.

To go further see the ladder problem in footnote nr 65 on page 117;
see also footnote nr 95, p. 185.
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"What is bigger 9.11 or 9.97"

ChatGPT begins by answering: "9.11 is bigger than 9.9".
But then it immediately explains why 9.11 is smaller!

What is bigger 9.11 or 9.97

@  9.1is bigger than 9.9,

Even though 9.11 has more decimal places, it's still a smaller number than 9.9 if you compare digit
by digit:

+ 911 means 9+ 0.11
+ 9.9 means 9 + 0.9, which is clearly larger than 0.11.
So, 9.9 is greater than 9.11.

PO PY O

Figure 80: Comparing two numbers.

I don’t believe that this is very reproducible. Sometimes it
flips around its answer; sometimes gets it correct right away;
sometimes get it gets it wrong.

Let’s try again : here ChatGPT says that even though 9.9

might look larger than 9.11, in fact it is smaller. It concludes
with : 9.11 > 9.9. So it doesn’t even correct itself in the end.

If you ask many times. Sometimes it gets it right too.@

But how is it that the model can do so great at Olympiad
grade problems, but then fail on very simple problems like
this?

I think this one (fig. 80) is, as I mentioned, a bit of a head
scratcher.

It turns out that a bunch of people studied the question in
depth [i.e. the strange answer by the LLM| and published a

paper.

581t seems clear that, since "best guesses" are based on statistics
calculated in the [huge and very costly] pre-training stage, and they add
some stochastic choice, this has little to do with math. Math implies
logical reasoning — LLMs don’t use logical reasoning, in math problem
they only imitate logical reasoning.
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I haven’t actually read their paper. But what I was told by
this team was that when you scrutinize the activations inside
the neural network, when you look at some of the features
and what features turn on or off and what neurons turn on
or off, a bunch of neurons inside the neural network light up
that are usually associated with Bible verses.

The model is reminded that these almost look like Bible
verse markers. And in a Bible verse setting, 9.11 would come
after 9.9/

The model somehow finds it cognitively very distracting
that in Bible verses 9.11 would be greater than 9.9 [in the
sense that it comes later].

Even though it’s actually trying to justify it and come up
to the answer with some math, it randomly ends up with the
right or with the wrong answer.

This phenomenon doesn’t fully make sense. And it’s not
fully understood. And there’s a few jagged issues like that.

That’s why you should treat this — the nanoGPT or any
LLM - as what it is: a stochastic system that can be really
magical, but also that you can’t fully trust.

You want to use it as a tool, not as something that you
letter rip on a problem and copy/paste the results.

02:07:30

15 Recap: from base model to assistant
We have now covered two major stages of training of large
language models. We recap them briefly below.

In the first stage, that is called the pre-training stage, we
are essentially training on internet documents to build a good
set of parameters.

When we train a language model on internet documents,
we get what’s called a base model.

59Tt is simply a way of numbering sections and subsections that looks
like decimal numbers, but are not.
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It is just an internet document simulator.

We saw that it is an interesting artifact[] It takes many
months to train on thousands of computers. It’s kind of a
lossy compression of the Internet. And the result is extremely
interesting.

But it’s not directly useful, because we don’t want to sample
internet documents. We want to ask questions to an Al and
have it respond to our questions.

For that we need an assistant. And it is the first objective
of the second stage, which is called the post-training stage.

We saw that we can actually construct an assistant in the
process of post-training, and specifically in the process of su-
pervised fine-tuning (SFT), as we call it.

In this stage we saw that it’s algorithmically identical to
pre-training. Nothing changes in the procedures.

The only thing that changes is the data set. Instead of in-
ternet documents, we now create and curate a very nice data
set of conversations.

We want millions of conversations on all kinds of diverse
topics between a human and an assistant.

Fundamentally these conversations are created by humansF_T]

So humans write the prompts and humans write the ideal
response or responses. They do that based on labeling docu-
mentations (i.e. instructions provided by the firm developing
the LLM).

Now in the modern stack, it’s not actually done fully and
manually by humans.

They actually now have a lot of help from these tools, so
we can use language models to help us create these data sets.

"In the Al community, "artifact" simply means a tool, resource,
or concrete output — such as a model file, dataset, or byproduct of
a process. It does not mean a "spurious phenomenon corrupting the
results of an experiment", as it does in physics.

"'The key idea is that LLM essentially copy what they have learned.
So we need to train them to complete conversations, the beginning of
which are used as prompts in the context window.
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And that’s done extensively. But fundamentally it’s all still
coming from human curation at the end. So we create these
conversations that now become our data set.

In the second stage — that is the post-training stage — we
first of all continue to improve our set of parameters. We now
train the neural network on the data set of conversations, so
that eventually it will be able to imitate full-fledged conver-
sations.

So we fine tuned [our parameters| on it or continued training
on it. And we got an assistant.

Then we shifted gears and started talking about some of
the cognitive implications of what this assistant is like. For
example, we saw that the assistant will hallucinate if you
don’t take some mitigations towards it.

We saw that hallucinations would be common. Then we
looked at some of the mitigations of those hallucinations.

Then we saw that the models are quite impressive and can
do a lot of stuff "in their head". But we saw that they can
also lean on tools to become better.

For example we can lean on a web search in order to hal-
lucinate less, and to maybe bring up some more recent infor-
mation.

We can also lean on tools like code interpreter. The LLM
can write some code and actually run it and see the results.

These are some of the topics we looked at so far.
02:10:05

16 From supervised fine-tuning to reinforcement
learning

Now what I'd like to do is to cover the last major stage of
this pipeline. That is reinforcement learning.

Reinforcement learning is still kind of thought to be under
the umbrella of post-training. But it is the third and last
major stage
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It’s a different way of training language models and usually
follows as this third step.

Inside companies like OpenAl, you will start here [at pre-
training]. And these are all separate teams.

There’s a team preparing data for pre-training. And a team
training the neural network in the pre-training stage.

There’s a team doing all the conversation generation and a
team doing the supervised fine tuning (SFT).

And there will be a team for the reinforcement learning as
well.

It’s kind of a handoff (like in a game of rugby) of the model
from one team to the next. You get your base model. Then
you find you need to have an assistant. And then you go into
reinforcement learning, which we’ll talk about now. That’s
the major flow.

02:11:00

Let’s now focus on reinforcement learning, the last major
stage of training.

exposition < pretraining worked problems ¢ supervised finetuning
(background knowledge) (problem + demonstrated solution, for imitation)

¥
practice problems < reinforcement learning
(prompts to practice, trial & error until you reach the correct answer)

Figure 81: The three stages of training an LLM. It is comparable
to the organization of a textbook.
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Let me first motivate it. Why would we want to do rein-
forcement learning? And what does it look like on a high
level?

Reinforcement learning can be compared with one of the
things we did when we were learning at school.

Just like you went to school to become really good at some-
thing, we want to take large language models through school.

We have a few paradigms of ways of giving them knowledge
or transferring skills.

When we're working with textbooks in school, observe that
there are three major pieces of information in these textbooks,
three classes of information, fig. 81:

1. The first thing you see is that there is a lot of exposi-
tion. By the way this is a totally random book I pulled
from the Internet — I think it’s on organic chemistry
or something, I'm not sure — but the important thing is
that you can see that most of the text is like the "meat"
of its exposition. It’s kind of background knowledge.

As you are reading through the words of this exposition
you can think of that roughly as training on that data.
That’s why when you’re reading through this stuff, this
background knowledge and all this context information,
it is comparable to pre-training. It’s where we build a
knowledge base of this data and get a sense of the topic.

2. The next major kind of information that you can see
is these problems with their completely worked out so-
lutions. So a human expert — in this case the author
of the book — has given us not just a problem but has
also worked through the solution. And the solution is
comparable to having the ideal response to train an as-
sistant in the SE'T stage.

So it’s basically the expert showing us how to solve the
problem in its full form.

Thus as we are reading the solution we are training on
the expert data. Then, later, we can try to imitate the
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expert. That roughly corresponds to having the SFT
model.

In this video we've already described pre-training and
we’ve already covered the imitation of experts and how
they solve these problems.

3. The third stage — reinforcement learning — is compa-
rable to the practice problems. Sometimes you'll see a
practice problem in the middle of the text, but of course
there will usually be many practice problems at the end
of each chapter in any textbook.

Practice problems of course we know are critical for
learning, because they’re getting you to practice your-
self and discover ways of solving these problems your-
self.

In a practice problem you get a problem description but
you’re not given the solution, but you are given the final
answer, usually in the answer key of the textbook.

So you know the final answer that you're trying to get to
and you have the problem statement, but you don’t have
the full-fledged solution, that is the intermediate steps
leading to the final result. You are trying to practice
the solution. You're trying out many different things.
And you see what gets you most efficiently to the final
solution. And so you’re discovering how to solve these
problems.

During this process, you're relying on number one the
background information which comes from pre-training,
and number two maybe a bit of imitation of human
experts. And you can probably try similar kinds of
solutions and so on.

In this video, so far we’ve seen item 1 and item 2, that is
pre-training and post-training (the SFT part). Now we are
going to see item 3: reinforcement learning.
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Now in this section we’re going to try to practice. And so
we’re going to be given prompts. We're going to be given the
final answers.

But we’re not going to be given expert solutions detailing
a sequence of steps leading to the final answer.

We have to practice and try stuff out. That’s what rein-
forcement learning is about.

Let’s go back to the problem that we worked with previ-
ously just so we have a concrete example to talk through as
we explore the topic.

I'm here, fig. 82, in the Tiktokenizer. First I want to get a
text box which is useful. But number two I want to remind
you again that we’re always working with one-dimensional
token sequences.

Tiktokenizer ook ase
Enily buys 3 apples and 2 oranges. Each orange costs $2. The Token count
total cost of all the fruit is $13. What is the cost of each 157
apple?
Set up a system of equations. Emily buys 3 apples and 2 oranges. Each orange costs
x = price of apples $2. The total cost of all the fruit is $13. What is th

3xx + 2%2 = 13 e cost of each apple?

3x +4=13
3xx =9

x=3 ==

= Set up a system of equations.
The oranges cost 2¢2 = 4. F=IpRCeREArarpes

So the apples cost 13 - 4 = 9, S0 TS

There are 3 apples.

So each apple costs 9/3 = 3. 3xx + 4 =13
— 3%x = 9
13-4=09,93=3. x=3
422540 = 3. The oranges cost 2%2 = 4.
So the apples cost 13 - 4 = 9,
Answer: $3 There are 3 apples.

So each apple costs 9/3 = 3. L)

13-4=9, 9/3=3.

(13 - 4)/3 = 3.

Answer: $3

85148, 50631, 220, 18, 41776, 323, 220, 17, 85138, 13,
9062, 19087, 7194, 400, 17, 13, 578, 2860, 2853, 315,
682, 279, 14098, 374, 400, 1032, 13, 3639, 374, 279, 2
853, 315, 1855, 24149, 1980, 11192, 1681, 709, 264, 18
87, 315, 39006, 627, 87, 284, 3430, 315, 41776, 198, 1

Figure 82: Tiktokenizing a problem and its solution, in preparation
to reinforcement learning.

This is the way I like to see a problem and its solution,
because it is the native view that the LLM has. This is what
it actually sees: token IDs.
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02:15:10

So "Emily buys 3 apples and 2 oranges. Each orange is $2.
The total cost of all the fruit is $13. What is the cost of each
apple?"

What I'd like you to appreciate here is these (on the left
part of fig. 82) are four possible candidate solutions, as an
example. And they all reach the answer « 3 ».

The point is that if I am the human data labeler, who is
creating a conversation to be entered into the training set, I
don’t really know which of these conversations to add to the
data set.

Some of these conversations set up a system equations.
Some of them just talk through it in English. And some
of them skip right through to the solution.

If you look at ChatGPT for example, and you give it this
question

Emily buys 3 apples and 2 oranges. Each orange costs $2. The total
cost of all the fruit is $13. What is the cost of apples?

@ Let's define variables:

+ Leta be the cost of one apple.

+ Each orange costs $2.

+ Emily buys 3 apples and 2 oranges.

« The total costis $13.
‘We can set up the equation:

3r+2(2)=13
3z+4=13
Subtract 4 from both sides:
3z=9

Divide by 3:

So, the cost of one apple is $3.

PP OPY Oy

Figure 83: ChatGPT solution.

it defines variables, sets up a system, and then does [at any
rate shows| some algebra.
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The first purpose of a solution is to reach the right answer
of course. We want to get the final answer « 3 ». That is the
important purpose here.

But there’s a secondary purpose as well: we want to make
the solution nice for the human.

Because we're assuming that the person wants to see the
solution, they want to see the intermediate steps, we want to
present it nicely, etc.

So there are two separate things going on here:
1) We want to lay out a nice presentation for the human.

2) We're only concerned with reaching the right answer.

Let’s for the moment focus on just reaching the final answer.

If we only care about the final answer, then which of these
|elements on the left of fig. 82| is the best solution for the
LLM to reach the right answer?

What I'm trying to get at is: we don’t know. Me as a human
labeler, T would not know which one of these is best.

As an example, we saw earlier on, when we looked at the
token sequences and the mental arithmetic and reasoning (fig.
69, p. 109), we saw that for each token we can only spend
a finite amount of compute, that is not very large, or you
should think about it that way.

So we can’t actually make too big a leap in any one token,
in the various solutions on the left of fig. 82. It maybe the
way to think about it.

As an example, in this one | (13 —4)/3 = 3) | (the fourth
solution in fig. 82, left part) what’s really nice about it is
that it’s very few tokens. So it’s going to take us a very short
amount of time to get to the answer. But with this single step,
we're actually asking for a lot of computation to happen to
reach the single individual token « 3».

(13 - 4)/3 = 3.

Figure 84: Fourth solution reached very fast.
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Maybe this is a bad example to give to the LLM because it
is encouraging it to skip through the calculations very quickly.
It will increase the risk that it make mistakes in his "mental
arithmetic".

Maybe it would work better to spread it out more, like the
third solution??]

Maybe it would be better to set it up as a system of equa-
tions, like the first solution?™|

Maybe it would be better to talk through it, like the second
solution?
We fundamentally don’t know.

We don’t know because what is easy for you or I or for
human labelers, what’s easy for us or hard for us, is differ-
ent than what’s easy or hard for the LLM. Its cognition is
dz’ﬁerentr_zl The token sequences are "different hard" for it.

Some of the token sequences, in fig. 82, that are trivial for
me might be too much of a leap for the LLM.

"To check, the transcriber asked again the ladder problem to Per-
plexity, decomposing it into simple steps, simple questions one at a time,
applying Thales and Pythagoras in one triangle, then in another. But
the AT makes plenty of elementary mistakes, and is not able to solve the
ladder problem — even decomposed into elementary steps.

"3LLMs are fundamentally not yet designed to do math. In 2025, they
still guess when they should reason. Perhaps in the future they will truly
be able to reason like a human. Even when they resort to “use code”
they can make plenty of mistakes because they haven’t mathematized
the problem correctly.

The paradox is that they are remarkably effective at writing and de-
bugging computer code.

Consider a language learning method developed in mid-2025
using HTML, JavaScript, PHP, and other technologies https:
//lapasserelle.com/IA_anglais/methode_anglais_TIA_1200.php. It
consists of numerous files, each several dozen lines long and relatively
complex. Perplexity was able to guide the developer (who is also the
transcriber of this video) in building the entire project. The developer
did not write a single line of code: he simply explained to the AI what
he wanted, pointed out bugs when they appeared, and the AI corrected
them easily.

" Elegant formula to say that LLMs don’t reason.


https://lapasserelle.com/IA_anglais/methode_anglais_IA_1200.php
https://lapasserelle.com/IA_anglais/methode_anglais_IA_1200.php
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So in figure 84 (fourth solution to Emily’s problem) the
computation of the last token — that is reaching the solution
« 3 » from the few preceding tokens — would be way too hard.

Conversely many of the tokens that I'm creating, in the
other solutions, might be just trivial to the LLM and we’re
just wasting tokens.

So if the only thing we care about is the final answer (item
2 page 136) and we're separating out the issue of the presen-
tation to the humans, then, in fact, we don’t really know how
to annotate this example. We don’t know what solution to
get to the LLM because we are not the LLM.

And it’s clear here in Emily’s math example.

But this is an issue in LLMs in general: our knowledge is not
LLM’s knowledge, and we don’t really know how to prepare
conversation prompts or math solution prompts for it.

Furthermore, the LLM already has a ton of knowledge, like
someone with a PhD in math and physics, chemistry and
whatnot.

In many respects, it knows more than we do. And it is rea-
sonable to suspect that we are not utilizing its full knowledge
in its problem solving.

But conversely I might be injecting a bunch of knowledge
in my solutions that the LLM doesn’t know in its parameters
and that can make it trip, whereas to us it is trite. Those are
the sudden leaps that are very confusing to the model.

Let’s repeat it: our cognitions are different.

And I don’t really know what to put on the left of fig. 82
if all we care about is reaching the final solution and doing it
economically.

To make a long story short, we are not in a good position to
create these token sequences for the LLM. And they’re useful
by imitation to initialize the system.

What we really want is for the LLM to discover the token
sequences that work for it.
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It needs to find for itself what token sequence reliably gets
to the answer given the prompt.

And it needs to discover that in the process of reinforce-
ment learning and of trial and error.

02:20:15

17 Reinforcement learning

Let’s see what reinforcement learning could do in Emily’s
problem.

We're back in the Hugging Face inference playground (sort
of sandbox), that allows us to very easily call different kinds
of models, fig. 85. We are now familiar with it.

As an example here on the top right I chose the Gemma-2-
2b — 2 billion parameters — model[?]

© Kssmassion

Figure 85: Hugging Face playground. We are using it to run
Gemma-2-2b model.

Nowadays two billion is very small. So this is a tiny model
but it’s okay to illustrate reinforcement learning.

The way reinforcement learning will work is quite simple:
we need to try many different kinds of solutions. And we
want to see which solutions work well or not.

So we're going to take the prompt ["Emily buys 3 apples
and 2 oranges, etc."]. We're going to run the model. And the
model generates a solution, figure 86.

""The Gemma 2b and Gemma 2b-it models were created by Google
DeepMind, in collaboration with other AI research teams within Google.
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We inspect the solution. We already know that the correct
answer for the problem is $3, so that’s what Gemma-2-2b
must find.

user Ermily burs 3 spples 3nd 2 oranges. Each crange costs $2. The total cost of ol the frui is $13. What is the cost of sach appie?

ASSISTANT Hiee's how 1o 306 the problm:
**1. Cadcudato the cost of the ceanges:**
* Emily beught 2 ecangos 3132 each, 10 the 1ola! cost of the ocanges 2 * $2 = $4
**2. Celcudato the oost of the apphes:*
* Tha total cost of all the fru is $13, and the coit of the oranges it $4, 10 tho coit of the spples 5 $13 - $4 =39,
**3. Ceécutato the oost of each apph:*®
* Emily bought 3 spples, 3nd the totdl cost of the appis is $9, 30 each apple costs $9 /3= 83

Answee:* The 0ost of each appi is $3

O Asdmessage

Figure 86: Gemma-2-2b solution to Emily’s problem in the prompt.

The model found the correct final result: $3m

That’s just one attempt at the solution.

We're going to delete this and we’re going to run it again.
Let’s try a second attempt.

The model solves it in a slightly different way.

Every single attempt will be o different generation because
these models are stochastic systems. Remember that at every
single token here we have a probability distribution and we’re
sampling from that distribution. So we end up going down
slightly different paths [to the solution proposed by the model].

This is a second solution that also reaches the correct an-
Swer.

Now we're going to delete that. Let’s run a third time.
Again a slightly different solution. But also it gets it correct.

"®Note that this doesn’t prove that it followed a correct math rea-
soning — for the simple reason that it doesn’t reason, it only imitate its
training corpus of data (internet document and conversations). Hope-
fully in a near future, LLM will be capable of reasoning like humans.
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In reinforcement learning, we can actually repeat this many
times. In practice you might sample thousands of indepen-
dent solutions or even millions of solutions for just a single
prompt.

Some of them will be correct and some of them will not be
very correct.

Basically we want to encourage the solutions that lead to
correct answers.

Let’s take a look at what that looks like.
Figure 87 shows a diagram of what this is looking like.

POST-TRAINING: REINFORCEMENT LEARNING
prompt

We are given problem statement Emily buys 3 apples and 2 oranges. Each orange
(prompt) and the final answer. costs $2. The total cost of all the fruit is $13.
We want to practice solutions that What is the cost of each apple?
take us from problem statement to
the answer, and "internalize" them
into the model.
Problem statement
solutions
Solution v vy

Answer: 3

We generated 15 solutions.

Only 4 of them got the right answer.

Take the top solution (each right and short).
Train on it.

Answer
Repeat many, many times.

Figure 87: Schematic illustration of reinforcement learning.

We have a prompt. Then we tried many different solutions
in parallel. Some of the solutions might go well. So they
reach the right answer — they are in green. And some of the
solutions might go poorly and may not reach the right answer
— they are in red.

Now Emily’s problem unfortunately is not the best exam-
ple, because it’s a trivial prompt. And as we saw even a two
billion parameter model always gets it systematically right.
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So it’s not the best example in that sense. But let’s exercise
our imagination. Let’s just suppose that the green oneq ' are
good, and the red ones are bad, fig. 87.

Thus we imagine that we generated 15 solutions. And only
four of them arrived at the right answer.

Now what we want to encourage the kinds of solutions that
lead to right answers.

Whatever token sequences happened in red solutions, obvi-
ously something went wrong along the way somewhere. And
this was not a good path to take through the solution.

And whatever token sequences happened in green solutions,
things went pretty well in this situation.

We want our LLM to answer like in the green solutions.

The way we encourage this kind of a behavior in the future
is to train the LLM on these sequences.

But these training sequences now are not coming from ez-
pert human annotators. There’s no human who decided that
this is the correct solution. This solution came from the model
itself.

So the model is practicing here. It’s tried out a few solu-
tions. Four of them seem to have worked. So they will be
included in the training data for the model.

This corresponds to a student looking at their solutions and
thinking: "Okay, this one worked really well, so this is how I
should be solving these kinds of problems."

In Emily’s problem example there are many different ways
to tweak a bit the methodology.

Just to give the core idea across, it’s simplest is to take the
single best solution out of these four, like say the one in yellow
(fig. 87). This is the solution that not only led to the right
answer, but maybe it had some other nice properties. Maybe
it was the shortest one, or it looked nicest in some ways.

""Green or yellow. Actually the yellow one is the best. See text.
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There are other criteria you could think of. But we’re going
to decide that this is the top solution [the yellow one].

And it will be included in our training set.

Then the model will be slightly more likely — once you have
updated your parameters — to take a path like that in similar
problems in the future.

But you have to remember that we’re going to run many
different diverse prompts across lots of math problems and
physics problems and whatever there might be.

So tens of thousands of prompts maybe to have in mind.
There’s thousands of solutions per prompt. And sthis is all
happening at the same time

As we're iterating this process, the model is discovering for
itself what kinds of token sequences lead it to correct answers.
It’s not coming from a human annotator. The model is play-
ing in the playground — but it knows what it’s trying to get
to.

And it’s discovering sequences that work for it. These are
sequences that don’t make any mental leaps. They seem to
work reliably and statistically. They fully utilize the knowl-
edge of the model as it has it.

So, this is the process of reinforcement learning. It’s ba-
sically a guess and check. We guess many different types of
solutions. We check them. And we’re going to do more of
what worked in the future. That is reinforcement learning.

In the context of what came before, we see now that the
SFT model, the supervised fine tuning model, is still helpful,
because it still initializes the model a little bit into the vicinity
of the correct solutions.

It is an initialization of the model, in the sense that it en-
courages the model to take solutions, like write out solutions,
and maybe it has an understanding of setting up a system of
equations. Or maybe it’s like talks through a solution. So it
gets you into the vicinity of correct solutions.
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But reinforcement learning is where everything gets dialed
in. We really discover the solutions that work for the model;
get the right answers; we encourage them; and then the model
just gets better over time.

In summary, that is the high level process for how we train
large language models.

Their training is very similar to how we educate pupils.

The only difference is that children go through chapters of
books and they do all these different types of training exer-
cises within the chapter of each book.

Instead, when we train Als, it’s almost like we do it stage
by stage depending on the type of that stage.

1. First we do pre-training which, as we saw, is analogous
to reading all the expository material.

We look at all the textbooks at the same time. And we
read all the exposition. And we try to build a knowledge
base.

2. Secondly, we go into the SF'T stage which is really look-
ing at all the fixed solutions from human experts. It is
analogous to all the different kinds of worked solutions
across all the textbooks.

We arrive at an SF'T model which is able to imitate the
experts but does so kind of blindly. It just does its best
guess, trying to mimic statistically the expert behavior.

That’s analogous to what you get when you look at all
the worked solutions in the textbook.

3. Finally in the last stage, we do all the practice problems
in the RL (reinforcement learning) stage.

Across all the textbooks, we also do all the practice
problems. And that’s how we get the RL model.

So on a high level the way we train LLMs is very similar to
the process we use for training children.
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02:27:47

18 DeepSeek-R1

The next point I would like to make is that actually these
first two stages — pre-training and supervised fine-tuning —
they’'ve been around for years. They are very standard and
everyone does them, all the different LLM providers.

It is this last stage — the RL training — that is still in its
early development. It is not standard yet in the field.

This stage is nascent.

I actually skipped over a ton of little details in this pro-
cess. But the high level idea is very simple: it’s trial and
error learning. There’s a ton of details, however, and little
mathematical nuances to performing the following:

e how you pick the solutions that are the best
e how much you train on them
e what is the prompt distribution

e how to set up the training run such that this actually
works.

So there’s a lot of little details and knobs to the core idea
that is very simple.

And so getting the details right in RL is not trivial.

Many companies like for example OpenAl and other LLM
providers have experimented internally with reinforcement
learning fine-tuning for LLMs for a while. But they’ve not
talked about it publicly. It’s all done inside the company.

That’s why the paper from DeepSeek that came out very
recently [on January 21, 2025] was such a big deal, fig. 88. Tt
is a paper from this company called DeepSeek AI@ in China.

"®Hangzhou DeepSeek Artificial Intelligence Basic Technology Re-
search Co., Ltd.
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This paper really talked very publicly about reinforcement
learning fine-tuning training for large language models, and
how incredibly important it is for large language models, and
how it brings out a lot of reasoning capabilities in the models.

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning

DeepSeek-Al

research@deepseek.com

Abstract

We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1.
DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without super-
vised fine-tuning (SFT) as a preliminary step, demonstrates remarkable reasoning capabilities.
Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing
reasoning behaviors. However, it encounters challenges such as poor readability, and language
mixing. To address these issues and further enhance reasoning performance, we introduce
DeepSeek-R1, which incorporates multi-stage training and cold-start data before RL. DeepSeek-
R1 achieves performance comparable to OpenAl-01-1217 on reasoning tasks. To support the
research community, we open-source DeepSeek-R1-Zero, DeepSeek-R1, and six dense models
(1.5B, 7B, 8B, 14B, 32B, 70B) distilled from DeepSeek-R1 based on Qwen and Llama.

e DoopSeok-R1 OpenAl-ol-1217 DeopSeck-R1-328 OpenAl-ol-min DeepSeok-V3

3,
e

saas
e 3

itile (%)

Figure 88: DeepSeek paper that shook the LLM community.

We shall presently look at it. This paper reinvigorated the
public interest of using RIJY| for LLMs.

It gave a lot of the nitty gritty details that are needed to
reproduce their results and actually get the RL stage to work
for large langage models.

Let’s go briefly through the DeepSeek-R1 paper, and what

happens when you actually correctly apply RL to LLMs, and
what that looks like, and what that gives you.

"Sometimes called "reinforcement learning supervised fine-tuning
training". But mostly it’s just called the "RL" or the "RL stage".



Deep Dive into LLMs like ChatGPT 147

The first thing I’ll scroll to is figure 2 of their paper — fig.
89 here — where we are looking at the improvement in how
the models are solving mathematical problems.

Table 2 | Comparison of DeepSeek-R1-Zero and OpenAl ol models on reasoning-related
benchmarks.

DeepSeek-R1-Zero AIME accuracy during training

—&— rl-zero-pass@1

—e— rl-zero-cons@16
02 --- 01-0912-pass@1
=== 01-0912-cons@64

0 2000 4000 6000 8000
Steps

Figure 2 | AIME accuracy of DeepSeek-R1-Zero during training. For each question, we sample
16 responses and calculate the overall average accuracy to ensure a stable evaluation.

Figure 89: Accuracy of solving mathematical problems on the
AIME bench marking.

This shows the accuracy of solving mathematical problems
on the AIME accuracy measure [bench marking|. And then
we can go to the web page. We can see the kinds of problems
that are actually in these the kinds of math problems that
are being measured here.

02:30:00
These are simple math problems.

You may pause the video and go to the paper https://
arxiv.org/pdf/2501.12948 These are the kinds of problems
that basically the models are being asked to solve, fig. 90.

You can see that in the beginning they’re not doing very
well. But then as you update the model with this many thou-
sands of steps, their accuracy keeps climbing.


https://arxiv.org/pdf/2501.12948
https://arxiv.org/pdf/2501.12948
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So the models are improving and they're solving these prob-
lems with a higher accuracy as you do this trial and error on
a large data set of these kinds of problems. The models are
discovering how to solve math problems.

6 2024 AIME I Solutions

Problem 6:

Consider the paths of length 16 that follow the lines from the lower left corner to the upper right corner on
an 8 x 8 grid. Find the number of such paths that change direction exactly four times, as in the examples
shown below.

Solution:

Answer (294):

Any such path must consist of 8 steps to the right and 8 steps upward in some order. First consider those
paths whose first step is to the right. All such paths start and end with a horizontal segment and include two
vertical segments with a horizontal segment in between. The path is completely determined by the choice
of the positions of the two vertical segments and the height of the middle horizontal segment. There are
(;) = 21 ways to select the positions of the two vertical segments and 7 ways to select the height of the
middle horizontal segment. Thus there are 21-7 = 147 paths that begin with a horizontal step. By symmetry,
there are also 147 paths that begin with a vertical step, so the total number of paths is 2 - 147 = 294.

Problem 7:

Find the greatest possible real part of

. 96 + 144i
75+ U7z + ——.

where z is a complex number with |z| = 4. Here i = +/—1.

Figure 90: Example of AIME problems@

But even more incredible than the quantitative kind of re-
sults of solving these problems with a higher accuracy, is the
qualitative means by which the model achieves these results.

When we scroll down one of the figures (fig. 3 of DeepSeek
paper), fig. 92 below, p. 150, what is interesting is that later
on in the optimization, the model seems to be using [more
time|. The average length per response goes up.

So the model seems to be using more tokens to get its higher
accuracy results.

80h'ctps ://www.ptsd.k12.pa.us/Downloads/2024_AIME_I_
Solutions.pdf
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Deep Dive into LLMs like ChatGPT 149

So it’s learning to create very long solutions.
Why are these solutions very long?

We can look at them qualitatively page 9 of DeepSeek paper
— fig. 91 below.

Question: If a > 1, then the sum of the real solutions of m = x is equal to
Response: <think>

To solve the equation m = x, let’s start by squaring both - - -
(Va—vass) =x* = a-varz=x*

Rearrange to isolate the inner square root term:

(a=x?)? =a+x = a®-2ax’+(x?)’ =a+x = x*-2ax’-x+(®-a)=0

Wait, wait. Wait. That's an aha moment I can flag here.

Let’s reevaluate this step-by-step to identify if the correct sum can be - - -
We started with the equation:
Va-+va+x=x

First, let’s square both sides:
a-Va+x=x = Ja+x=a-x
Next, I could square both sides again, treating the equation: - - -

2

Table 3 | An interesting “aha moment” of an intermediate version of DeepSeek-R1-Zero. The
model learns to rethink using an anthropomorphic tone. This is also an aha moment for us,
allowing us to witness the power and beauty of reinforcement learning,.

Figure 91: An interesting “aha moment” of an intermediate version
of DeepSeek-R1-Zero.

What they discover is that the model solution become very
long — here’s a question, fig. 91, and here’s the answer from
the model — partially because what the model learns — and
this s an emerging property of new optimization — is that it
is good for problem solving.

It starts to do stuff like this: "Wait, wait. Wait. That’s
an aha moment I can flag here. Let’s reevaluate this, step by
step, to identify if the correct sum can be..." (see fig. 91).

What is the model doing here ¢
The model is basically re-evaluating steps.

It has learned that it works better, for accuracy, to try
out lots of ideas, try something from different perspectives,
retrace, reframe, backtrack...
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It is doing a lot of the things that you and I are doing in
the process of problem solving for mathematical questions.

But it’s rediscovering what happens in your head not what
you put down on the solution.

There is no human who can hard code this stuff in the ideal
assistant response. This is only something that can be dis-
covered in the process of reinforcement learning because you
wouldn’t know what to put here.

This simply turns out to work for the model and it improves
its accuracy in problem solving.

The model learns what we call these "chains of thought" in
your head and it’s an emergent property of the optimization@

That’s what is bloating up the response length.

DeepSeek-R1-Zero average length per response during training

12000

10000

2
g
g

6000

Average length per respanse

4000

2000

0 2000 4000 6000 8000
Steps

Figure 3 | The average response length of DeepSeek-R1-Zero on the training set during the RL
process. DeepSeek-R1-Zero naturally learns to solve reasoning tasks with more thinking time.

Figure 92: DeepSeek-R1 answers take more time, as their accuracy
increases.

But that’s also what is increasing the accuracy of the prob-
lem solving.

8! Generally speaking "an emergent feature" is some structure or pat-
tern that appears in a dynamic process, and that cannot be explained
with simple math. An old example is a model termites moving and
eating chunks of wood https://lapasserelle.com/courses/advanced_
finance/documents/termites.mp4


https://lapasserelle.com/courses/advanced_finance/documents/termites.mp4
https://lapasserelle.com/courses/advanced_finance/documents/termites.mp4
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What’s so incredible here is that the model is discovering
ways to think. It’s learning what I like to call cognitive strate-
gies of how you manipulate a problem and how you approach
it from different perspectives. How you pull in some analo-
gies or do different kinds of things like that? How you try out
many different things over time, check a result from different
perspectives?

In short: How you solve problems?

But it’s discovered by the reinforcement learning. It is ex-
tremely incredible to see this emerge in the optimization with-
out having to hard code it anywhere.

The only thing we’ve given it are the correct answers. Then
this comes out from trying to just solve them correctly — which
is incredible.

Now let’s go back to the problem that we’ve been working
with [Emily’s problem|. And let’s take a look at what it would
look like for this kind of a model — what we call reasoning or
thinking model — to solve that problem.

When I pasted Emily’s problem into ChatGPT 4o, I got
the response shown in figure 83, page 135.

Let’s take a look at what happens when you give this same
query to what’s called a reasoning or a thinking model. This
is a model that was trained with reinforcement learning.

The model described in DeepSeek-R1 paper is available on
chat.deepseek.com.

(W Hi,I'm DeepSeek.

How can | help you today?

Figure 93: Main page of chat.deepseek.com


chat.deepseek.com
chat.deepseek.com
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It is the company that developed it and is hosting it.

You have to make sure that the DeepThink(R1) button is
turned on (bottom left of fig. 93), to get the R1 model as it
is called.

We can paste Emily’s problem in the query box and run it.

Let’s take a look at what happens now and what is the
output of the model.

Okay so here’s what it says, see fig. 95 next page.

And this is previously what we got using a basic SFT ap-
proach, a supervised fine-tuning approach, fig. 94 below.
[That is the result after the pure post-training, without the
third stage called RL.]

It was mimicking an expert solution.

Emily buys 3 apples and 2 oranges. Each orange costs $2. The total
cost of all the fruit is $13. What is the cost of apples?

@  Let's define variables:

+ Let z be the cost of one apple.

« Each orange costs $2.

+ Emily buys 3 apples and 2 oranges. N

« The total cost is $13.
We can set up the equation:

3z+2(2)=13
3z +4=13
Subtract 4 from both sides:
Jz=9

Divide by 3:

So, the cost of one apple is $3.

WO O PYC

Figure 94: Result using an SFT approach (without RL).

And this (fig. 95 next page) is what we get from the RL
model.
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New chat

Emily buys 3 apples and 2 cranges. Each orange costs $2. The total coat of all the fruk i $13

What is the cost of apples?

Figure 95: Result using the RL model.

The model itself begins saying: "Okay, let me try to figure
this out. So Emily buys 3 apples and 2 oranges. Each orange
cost $2 and the total is $13. I need to find out how much each
apple blah blah blah."

As you're reading this, you can’t escape thinking that this
model is thinking.

It is definitely pursuing the solution. It derives that it must
cost $3.

And then it says: "Wait a second let me check my math
again to be sure."

Then it tries it from a slightly different perspective.
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And then it says: "Yeah, that seems right. So each apple
is $3...".

After some more checks, it adds: "Yep all that checks out.
I think that’s the answer. T don’t see any mistakes. Let me
see if there’s another way to approach the problem, maybe
setting up an equation. Let’s let the cost of one apple be
a dollar, then 3 apples cost 3a blah blah blah... Yep same
answer. So definitely each apple is $3". All right confident
that that’s correct."

[All this text is on fig. 95, in the answer from DeepSeek.]@

Then what DeepSeek does is this: once it did the thinking
process (shown in grey), it writes up the nice solution for the
human (shown in black).

So the first part of DeepSeek answer (shown in grey) is
more about the correctness aspect ; and the second part of
DeepSeek answer (shown in black) is more about the presen-
tation aspect, where it writes it out nicely and boxes in the
correct answer at the bottom.

What’s incredible about this is we get this thinking process of
the model. And this is what’s coming from the reinforcement
learning process.

This is what’s bloating the length of the token sequences,
fig. 92. They’re thinking and they’re trying different ways.

It also you higher accuracy in problem solving, fig. 89.
It is where we see these "aha moments", and these different
strategies, and these ideas for how you can make sure that
you're getting the correct answer, fig. 95.

82Gee also how DeepSeek solves the ladder problem. At first
glance, it is very impressive. Most LLMs fumble, make mistakes,
give ridiculous answers, while DeepSeek gets to the right answer, and
presents a "human-like" way of thinking and doing the math. https:
//lapasserelle.com/LLM/ladder_problem_deepseek.pdf

However when we closely examine DeepSeek answer, we see that it
is bizarre, because it presents intermediate steps that are wrong. For
instance it says that the two ladders upper extremities rest on the walls
at height w, which is also the width of the corridor.

It’s not enough to pepper the response with "Let me check", "Looks
good to me", or "No sweat" to make it a genuine logical reasoning.


https://lapasserelle.com/LLM/ladder_problem_deepseek.pdf
https://lapasserelle.com/LLM/ladder_problem_deepseek.pdf
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The last point I wanted to make is some people are a little
bit nervous about putting, you know, very sensitive data into
chat.deepseek.com because this is a Chinese company. So
people are a little bit careful and cagey with that.

However DeepSeek R1 is a model that was released by its
producer. So it is an open source and open weights model. It
is available for anyone to download and use.

You won’t be able to run it, at full precision or full capacity,
on a MacBook or other local device, as this is quite a large
model.

But many companies are hosting the full largest model.

One of those that I like to use is called together.ail

together.ai DASHBOARD  PLAYGROUNDS ~  GPUCLUSTERS  MooeLs  woss  anaumics  oocs

® CHAT ooy

MODEL

DeepSeek R1

POPULAR SERVERLESS ENDPOINTS

Mota Liama 31 4088 Instruct Turbo

ALL SERVERLESS ENDPOINTS

Figure 96: Playground of together.ail You can then choose the
LLM you want to work with.

When you go to together.ai| you sign up. And you go to
playground. You can select on the right DeepSeek R1.

There’s a choice of models that you can select here. These
are all state-of-the-art models.

It is similar to the Hugging Face inference playground that
we've been playing with earlier.

But together.ai will usually host all the state-of-the-art
models. So select DeepSeek R1.


chat.deepseek.com
together.ai
together.ai
together.ai
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We can ignore the settings that are offered us to tweak. I
think the default settings will be alright.

So we put our usual Emily problem in the CHAT box on
the left, fig. 97.

together.ai OASHBOARD  PLAYGROUNDS - GPUCLUSTERs  MoDELs  Joss  awames  oocs ()

® CHAT

=u o ¢ MODEL

Emiy buys 3 apples and 2 oranges. Each orange costs $2. The total cost of al the frutis $13. What is the cost of
applos? PARAMETERS

Systom Prompt
<think> Okay, let's see. Emily buys 3 apples and 2 oranges. Each orange costs $2. The total cost is $13. | need [=]

ofaut
tofind the cost of each apple. Hmm, okay. Let me break this down step by step. Default

First, let's figure out how much Emiy spent on oranges. She bought 2 oranges, and each orange is $2. So, 2 oranges OErer T

times $2 per orange. That should be 2 * 2 = $4. So, the oranges cost $4 in total
Output Longth .
No is $13.f the or 084, ney must n spenton
vould be the tof 5. That would be $13 - $4 = $9.
Tomperature O
But she bought 3 apples. R0, to fid the cost per appe, I need to dvide the total cost of apples by the number of
‘apples. That would be $9 divided by 3 apples. Let me write that out: $9 = 3 = $3. So, each apple costs $3. Let me
check if that makes sense.
Top-P .

If each appie is $3, then 3 apples woukd be 3 * 3 = $9. Then, 2 oranges at $2 each wouki be 2 * 2 = $4. Adding those
together: $9 + $4 = $13, which matches the total given. So, that seems right

Figure 97: DeepSeek tested via together.ai| playground.

Because the model was released by DeepSeek what we’re
getting here (fig. 97) should be essentially equivalent to what
we got there (fig. 95).

Now, as we know, because of the randomness in the sam-
pling, we’re going to get something slightly different.

But in principle this should be identical in terms of the
power of the model and you should be able to see the same
things quantitatively and qualitatively.

But this test of DeepSeek is now totally under the control
of an American company.

So that’s DeepSeek and that’s the what’s called a reasoning
model ]

83Calling a model based on reinforcement learning a “thinking” or
“reasoning” system is still an exaggeration. It may mimic aspects of
human thought — DeepSeek, for instance, uses expressions like “aha,”
“wait a second,” or “let me check.” But that doesn’t mean it truly thinks.


together.ai
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02:37:10

Let’s go back to ChatGPT, and look at various versions via
together.ai. We see a choice of models in the drop down
menu — on the left of the image in figure 98. Some of them,
like 01, 03-mini, O3-mini-high, etc., are talking about uses
advanced reasoning.

What this is referring to — "uses advanced reasoning" — is
the fact that it was trained by reinforcement learning with
techniques very similar to those of DeepSeek R1. This is per
public statements of OpenAl employees.

So these (down the llist) are thinking models, trained with
RL. The models like GPT-40 or GPT-40-mini, that you’re
getting in the free tier (on top of the list), you should think
of them as mostly SF'T models, supervised fine-tuning models.

DeepSeek’s behavior recalls Joseph Weizenbaum’s ELIZA program de-
veloped between 1964 and 1966, and Terry Winograd’s SHRDLU, one of
the earliest natural language understanding systems developed at MIT
between 1968 and 1970. They also gave the impression they were un-
dertanding you and thinking.

ELIZA would simply repeat what the human interlocutor said:

Human: — I feel mistreated by my boss.

Machine: — You feel mistreated by your boss? Tell me how.

Human: — He systematically criticizes what I do

Machine: — So he systematically criticizes what you do?

etc.

SHRDLU actually was way more sophisticated: it allowed users to
converse with a computer about actions in a small "block world," a
simulated environment of simple geometric objects. The program could
interpret commands such as "put the red block on the green cube,"
reason about their context, and respond coherently in English.

SHRDLU operated within a narrow, rule-based world, but its under-
standing was built on deterministic logic and linguistic heuristics.

Modern models like DeepSeek simulate reasoning by mimicking what
they learned in their training sets of data.

Both create the illusion of understanding, though through very differ-
ent paradigms: handcrafted symbolic rules in Winograd’s case versus
statistical pattern learning in modern RL systems.

In fact, one could argue that SHRDLU came closer to "thinking" than
DeepSeek.

In any case, it is the transcriber’s opinion that genuine reasoning mod-
els remain, as of 2025, a goal for the future.


together.ai
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@5 @ ChatGPT 40

Emily buys 3 apples and 2 oranges. Each orange costs $2. The total

il o costof all the frut is $13. What is the cost of each appie?

GPT-40 with scheduled tasks 4
A CRAtGRT o fotom v e Let's define variables:

+ Letz be the cost of one apple.

+ Each orange costs $2.

+ Emily buys 3 apples and 2 oranges.

+ The total cost is $13.

We can set up the equation:
o1 pro mode:
Bes e 32 +2(2) =13

More models 3r+4=13

. Subtract 4 from both sides:
> Temporary chat

3z=9

Divide by 3:

So, the cost of each apple is $3.

[N = R I -

Figure 98: Back to ChatGPT.

The SFT models — "pure SFT" without the third training
stage which is reinforcement learning — don’t actually do this
thinking as you see in the RL models.@ Even though there’s a
little bit of reinforcement learning involved with these models
—and I'll go that into that in a second — these are mostly SFT
models.

So in the same way as what we saw here [when we chose
DeepSeek R1 in the together.ai playground| we can pick
one of the thinking models, like say 03-mini-high.

These models by the way might not be available to you
unless you pay a ChatGPT subscription of either $20 per
month or $200 per month for some of the top models.

So let’s pick a thinking model and run it.

84We saw that RL models, given a query and its final result, try
numerous possible solutions. They first discard those that fail to reach
the correct outcome, then among the successful ones, they select — and
include in future training — the “best” solutions. Yet this still doesn’t
mean the model actually thinks. Any professor knows students who can
write the problem, state the correct answer at the end, and fill the space
in between with plenty of well-presented nonsense.
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« G (5 _chatgpt.com/c/670261b0-dbdc-8007-acat B Q%) D & Rebunchtoupaste

@5 @ ChatGPT 03-mini-high A - )

Emily buys 3 apples and 2 oranges. Each orange costs $2. The total
cost of allthe fruit is $13. What is the cost of each apple?

sz Soling 3z + 4 = 13 gave z = 3.

the total fruit cost. With oranges at $4, apples were priced

Let the cost of each apple be z dolars. Then the total cost is given by the equation:
3z+2x2=13
Since each orange costs 2 dollars, the cost for oranges is:

2% 2= 4 dollars

z+4=13

Figure 99: Selecting ChatGPT-03-mini.

What’s happening here, fig. 99, is it says reasoning and it
starts to do stuff comparable to what we’ve already seen.

However what we're seeing with GPT-03-mini is not exactly
the stuff we saw with DeepSeek R1.

Even though under the hood the DeepSeek model produces
these kinds of kind of chains of thought, and shows them in
its interface, OpenAl chooses to not show the exact chains of
thought in the web interface. It shows only little summaries
of those chains of thought.

OpenAl does this, I think, partly because they are worried
about what’s called the distillation risk: that is that someone
could come in and actually try to imitate those reasoning
traces, and recover a lot of the reasoning performance by just
imitating the reasoning chains of thought.

Therefore they hide them and they only show little sum-
maries of them. So you’re not getting exactly what you would
get in DeepSeek with respect to the reasoning itself. Then
OpenAl writes up the solution, fig. 99.

DeepSeek chat and OpenAl chat are more or less equivalent,
even though we’re not seeing the full under the hood details
for OpenAl.
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At present, in terms of performance, these OpenAl models
(including RL) and DeepSeek models are roughly on par, I
would say.

It’s actually hard to tell because of the evaluations. But
if you're paying $200 per month to OpenAl, some of their
models I believe still look better.

DeepSeek R1, nonetheless, for now is still a very solid choice
for a thinking model that would be available to you, either
on their website or any other website, because the model has
open weights. It has been fully released, and you can just
download it.

So that’s thinking models.
What is the summary so far?

Well, we’ve talked about reinforcement learning and the
fact that thinking emerges in the process of the optimization
when we basically run RL on many math and code problems
that have verifiable solutions.

They reach the answer « 3 » in Emily’s problem|, and
present a nice looking reasonings.

You can access these thinking models — for instance DeepSeek
or any inference provider — in platforms like together.ail
There you can choose which model you want to work with.

Various thinking models are also available in ChatGPT un-
der any of the ol or 03 models.

But models like ChatGPT-4o, etc., are not thinking models.
You should think of them as mostly SF'T models.

Now if you have a prompt that requires advanced reason-
ing and so on, you should probably use some of the thinking
models or at least try them out.

Empirically, for a lot of my use, when you're asking a
simpler question, like a knowledge based question or some-
thing like that, the use of a thinking model might be overkill.
There’s no need to think 30 seconds about some factual ques-
tion. For that I will usually default to just GPT-4o.
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Empirically about 80 to 90% of my use is just GPT-4o.
And when I come across a very difficult problem like in math
and code etc., I will reach for the thinking models. But then
I have to wait a bit longer because they’re thinking. So you
can access these on ChatGPT, on DeepSeek, etc.

Also I wanted to point out aistudio.google.com.

Google Al Studio Untitied prompt

v System Instructions

What will you build?

Push Gemini to the limits of what Al can do using the Gemini API

Figure 100: aistudio.google. com main window.

It looks really busy, really ugly, because Google is just un-
able to do this kind of stuff well.

Google Al Studio Untitled prompt #

©= GetAPIkey System Instructions.

il the fruitis $13.
‘each apple?

Run settings

. Identify the known information:

Figure 101: aistudio.google.com working on Emily’s problem.
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In aistudio.google.com you can choose among several
models. If we choose Gemini 2.0 Flash Thinking Experimen-
tal 01-21, fig. 101, right column, that’s also a kind of early
experiment of a thinking model by Google.

We can give it our usual problem and click run, fig. 101.
The thinking model will do something similar to what we saw
with DeepSeek and ChatGPT-03-mini. It also comes out with
the right answer [answer : « 3 »| reached at the end of some
reasoning. So Gemini also offers a thinking model.

Anthropic currently does not offer a thinking model.

Reinforcement learning (RL) is the frontier development
of these LLMs. It is the new exciting stage. But getting
the details right is difficult. That’s why all these thinking
models are currently experimental as of early 2025. This is
the frontier development of pushing the performance on these
very difficult problems using reasoning that is emerging in
these optimizations.

02:42:00
19 AlphaGo

The discovery that reinforcement learning is an extremely
powerful way of learning is not new in the field of Al

And one place where we’ve already seen this demonstrated
is in the game of Go:

Google  apmgo x ¢ @a a =@

- - ! How DeepMind's AlphaGo Becar
== [ 706 o Go Player | by Andre Ye | Artficial Inteli

Figure 102: Search for "alphago" on Google search.
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Famously DeepMind developed the system AlphaGo — and
you can watch a movie about it — where the system is learning
to play the game of Go against top human players.

They explained how they lead AlphaGo to world class level
in https://www.nature.com/articles/nature24270 publi-
shed 19 October 2017 in Nature

Mastering the Game of Go without Human Knowledge

David Silver*, Julian Schrittwieser*, Karen Si *, loannis A lou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy
Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, Demis Hassabis.

DeepMind, 5 New Street Square, London EC4A 3TW.
*These authors contributed equally to this work.

A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, su-
perhuman proficiency in challenging domains. Recently, AlphaGo became the first program
to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated posi-
tions and selected moves using deep neural networks. These neural networks were trained
by supervised learning from human expert moves, and by reinforcement learning from self-
play. Here, we introduce an algorithm based solely on reinforcement learning, without hu-
man data, guidance, or domain knowledge beyond game rules. AlphaGo becomes its own
teacher: a neural network is trained to predict AlphaGo’s own move selections and also the
winner of AlphaGo’s games. This neural network improves the strength of tree search, re-

Figure 103: Paper in which a Google team explained how AlphaGo
"auto-trained" itself.

When we scroll down we find a really interesting plot that,
I think, is kind of familiar to us (fig. 104, left plot).

Figure 3: Empirical evaluation of AlphaGo Zero. a Performance of self-play reinforcement leaming. The plot
shows the performance of each MCTS player ag, from each iteration i of reinforcement leaming in AlphaGe Zerok
Elo ratings were computed from evaluation games between different players, using 0.4 seconds of thinking time per
move (se¢ Methods). For comparison, a similar player trained by supervised leaming from human data, using the

KGS data-set, is also shown. b Prediction accuracy on human professional moves. The plot shows the accuracy of the

Figure 104: AlphaGo progressive improvement.


https://www.nature.com/articles/nature24270
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In LLMs, we are discovering the same curve in the more
open domain of arbitrary problem solving, instead of on the
closed specific domain of the game of Go.

What they saw — and we’re seeing this in LLMs as well as
the RL stage training becomes more mature — is this progres-
sive improvement of the ELO rating of the machine playing
the game of Go.

The dotted horizontal line in fig. 104, left plot, is the ELO
of Lee Sedol an extremely strong human player. What they
are comparing is the strength of a model trained by supervised
learning (purple curve) and a model trained by reinforcement
learning (auto-training, light blue curve).

The supervised learning model is imitating human expert
players. Therefore, if you just get a huge amount of games
played by expert players in the game of Go, and you try to
imitate them, you are going to improve. But then you top
out. And you never overcome the really top players of in the
game of Go like Lee Sedol.

You're never going to pass above them because you're just
imitating human players. You can’t fundamentally go beyond
a human player if you’re just imitating human players.

Using a technique similar to reinforcement learning, on the
other hand, is significantly more powerful.

Reinforcement learning, for a game of Go, means that the
system is playing moves that empirically and statistically lead
to win, to winning the game.

AlphaGo, during its training, played against itself. It was
using reinforcement learning to create roll-outs. So the dia-
gram in figure 87, page 141, applies exactly here.

In AlphaGo there is no prompt@ And, because there’s no
prompt, it’s just a fixed game of Go. But it’s trying out lots
of plays. And then the games that lead to a win (instead of
to a math result) are reinforced. They’re made stronger.

85We could consider, though, that the board layout before it is Al-
phaGo’s turn is a kind of prompt.
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Thus the system is learning basically the sequences of ac-
tions that empirically and statistically lead to winning the
game.

Reinforcement learning is not constrained by human perfor-
mance — that would sort of limit it. RL can do significantly
better and overcome even the top players like Lee Sedol.

Probably DeepMind team could have run this training longer,
but they just chose to crop it at some point, because this
costs money. But this is a very powerful demonstration of
reinforcement learning [f9]

We’re only starting to see hints of the diagram in fig. 104,
left part, in larger language models for reasoning problems.

The lesson to draw from the AlphaGo experience is: We're
not going to get too far by just imitating human experts.

We need to go beyond that, set up these little game envi-
ronments [speaker shows again fig. 87, p. 141], and let the
system discover reasoning paths, or ways of solving problems
that are unique and that just work well.

On this aspect of uniqueness, notice that when you’re doing
reinforcement learning, nothing prevents you from veering off
the distribution of how humans are playing the game. When
we go to "alphago" search, fig. 102, one of the suggestions is
"move 37".
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Figure 105: Search for "alphago move 37" on Google search.

86 AlphaGo did not win the official World Go Championship, but it
achieved global recognition by beating the reigning world champion Ke
Jie in May 2017 at the “Future of Go Summit” in Wuzhen, China.
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Move 37 in AlphaGo is referring to a specific move AlphaGo
played in a game.lﬂ No human expert would make such a
move. The probability of this move to be played by a human
player was evaluated to be about 1 in 10000. So it’s a very
rare move, but in retrospect it was a brilliant move.

It demonstrated that AlphaGo, in the process of reinforce-
ment learning, discovered a strategy of playing that was un-
known to humans, but in retrospect is brilliant.

Watch the YouTube video Lee Sedol versus AlphaGo Mowve
37 reactions and analysis https://youtu.be/HT-UZkiOLv8

...................
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Figure 106: Layout immediately after AlphaGo (playing Black) has
played Move 37 (marked with a circle). The black stone with the
circle at coordinates ’Q-10" is the famous Move 37 from Game 2
against Lee Sedol.

Figure 106 shows what the board looked like right after
AlphaGo’s move. It was a very surprising move — I honestly
thought it was a mistake when I first saw it. People were
shocked because it was a move no human would normally
play. Yet AlphaGo played it because, during its training,

8"Move 37 — the famously creative move by AlphaGo — occurred dur-
ing Game Two of the match against Lee Sedol, on March 9, 2016. This
move is widely regarded as a landmark moment in AI and Go history,
stunning commentators and Go experts with its originality and depth.


https://youtu.be/HT-UZkiOLv8
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that move ended up being evaluated as a good idea. It just
happens not to be a kind of move that a human would make.

That is again the power of reinforcement learning. And in
principle we can see the equivalence of that if we keep scaling
up this paradigm in language models, see fig. 87 p. 141.

What that looks like is kind of unknown.

What does it mean to solve problems in such a way that
even humans would not be able to get? How can you be
better at reasoning or thinking than humans? How can you
go beyond just a thinking human?

Maybe it means discovering analogies that humans would
not be able to create. Or maybe it’s like a new thinking
strategy. It’s kind of hard to think through.

Maybe it’s a wholly new language that actually is not even
English. Maybe it discovers its own language that is a lot bet-
ter at thinking, because, unlike humans, the model is uncon-
strained to stick with English. So maybe it takes a different
language to think in, or it discovers its own language@

In principle the behavior of the system is a lot less defined
[than strict English|. It is open to do whatever works. It is
also open to slowly drift from the distribution of its training
data which is English.

But all of that can only be done if we have a very large
diverse set of problems in which the strategy can be refined
and perfected.

There is a lot of "frontier LM research" going on right now.

It is trying to create those kinds of prompt distributions
that are large and diverse.

These are all like game environments in which the LLMs
can practice their thinking.

88 Karpathy gets a bit carried away about reinforcement learning in
training AlphaGo. Remember, though, that RL in large language models
remains a kind of self-supervised fine-tuning ("auto-SFT"). In practice,
it mainly encourages the model to mimic good answers and does not
confer any true logical reasoning abilities.
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It’s like writing the practice problems, see figure 81 page
131. We have to create practice problems for all of domains
of knowledge.

If we have practice problems, and tons of them, the models
will be able to practice reinforcement learning, learn using RL
them and create diagrams like fig. 104 (left part) but in the
domain of open thinking, instead of a closed domain like the
game of Go.

02:48:26

20 Reinforcement learning from human feed-
back (RLHF)

There’s one more section within reinforcement learning that
I wanted to cover. It is implementing RL in unverifiable do-
mains Y

So far all of the problems that we’ve looked at are in what’s
called verifiable domains — that is we can score any candidate
solution very easily against a concrete answer.

In Emily’s problem the answer is « 3 ». And we can very
easily score these solutions against the answer of « 3 ».

Either we require the models to box in their answers and
then we just check for equality of whatever is in the box with
the correct answer that we know. Or you can also use what’s
called an LLM judge [still an automatic procedure].

89In verifiable domains — for example, chess, Go, or code generation
— the model’s actions can be checked or evaluated objectively (and
automatically by a program). And it is easy to build efficient reward
functions to fine-tune the neural network.

By contrast, unverifiable domains are those where no such objective
truth exists — or where success cannot be verified automatically by a
program. These include creative writing, dialogue, problem reasoning,
moral decisions, or open-ended question answering.

In such areas, we cannot easily compute whether one answer is "right".
Human judgment (through reinforcement learning from human feedback,
RLHF) must step in to build efficient reward functions. In 2025, it is a
central limitation of applying RL to large language models.
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The LLM judge looks at a solution, and it gets the answer,
and scores the solution for whether it’s consistent with the
answer or not. And LLMs empirically are good enough at
the current capability that they can do this [check solution in
verifiable domains]| fairly reliably.

So we can apply those kinds of techniques as well.
In any case, in verifiable domains, we have a concrete an-

swer and we're just checking solutions again against it. And
we can do this automatically with no humans in the loop.

The problem is that we can’t apply the strategy in what’s
called unverifiable domains.

Usually these are, for example, creative writing tasks like
write a joke about pelicans, or write a poem, or summarize a
paragraph, or something like that.

In these kinds of domains, it becomes harder to score our
different solutions to this problem.

For example writing a joke about pelicans, we can generate
lots of different jokes of course, that’s fine.

prompt:
"write a joke about pelicans”

\lf\r S A

problem: how we do score these?

Figure 107: Generation of several jokes about pelicans. How to
evaluate the different jokes we generated one way or another?



170 Large Language Models

For example, we can go to ChatGPT and ask it to generate
a joke about pelicans. We give it the prompt: "Write a super
funny joke about pelicans."

15 @ ChatGPT 4o

Wit a super funrry joke about pelicars

@  wWhy do pelicans always carmy so masch stuff in therr beaks?

Bacause they don't belican in bacipacin! & &

Figure 108: Joke about pelicans generated by ChatGPT.

Write a super funny joke about pelicans.

Why do pelicans always carry so much stuff in their beaks?
Because they don't bellican in backpacks ®"

Okay [that’s not so funny|. We can try something else :

Write a super funny joke about pelicans.

Why don’t pelicans ever pay for their drinks?
Because they always bill it to someone else!/®©

Haha...

Okay, these models are obviously not very good at humor.

Actually I think it’s pretty fascinating because I think hu-
mor is secretly very difficult. And the model have the capa-
bility I think.

Anyway, in any case you could imagine creating lots of
jokes.

The problem that we are facing is: how do we score them?

In principle, we could of course get a human to look at all
these jokes just like I did right now.

The problem with that is, if you are doing reinforcement
learning, you’re going to be doing many thousands of updates.
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And for each update you want to be looking at say thousands
of prompts. And for each prompt you want to be potentially
looking at looking at hundred or thousands of different kinds
of generations.

So there’s just way too many of these to look at.

In principle you could have a human inspect all of them and
score them and decide that, okay, maybe this one is funny, and
maybe this one is funny, and this one is funny...

And we could train on them to get the model to become
slightly better at jokes — in the context of pelicans at least.

The problem is that it’s way too much human time.

This is an unscalable strategy. We need some kind of auto-
matic strategy for doing this.

One sort of solution to this was proposed in the paper
shown in figure 109, that introduced what’s called reinforce-
ment learning from human feedback.

This was a paper from OpenAl at the time. And many of
the authors are now co-founders in Anthropic.

It proposed a approach for basically doing reinforcement
learning in unverifiable domains.

Fine-Tuning Language Models from Human Preferences

Daniel M. Ziegler*  Nisan Stiennon®  Jeffrey Wu  Tom B. Brown
Alec Radford  Dario Amodei  Paul Christiano ~ Geoffrey Irving
OpenAl
{dmz, nisan, jeffwu, tom, alec, damodei, paul, irving}@openai.com

. [es.CL] 8 Jan 2020

Abstract

Reward learning enables the application of rein-
forcement learning (RL) to tasks where reward is
defined by human judgment, building a model of
reward by asking humans questions. Most work
on reward learning has used simulated environ-
ments, but complex information about values is of -
ten expressed in natural language, and we believe
reward learning for language is a key to making
RL practical and safe for real-world tasks. In this
paper, we build on advances in generative pretrain-
ing of language models to apply reward learning
to four natural language tasks: continuing text
with positive sentiment or physically descriptive
Ianonase. and summarization tasks on the TL:DR

plex goals to Al agents are likely to both involve and require
natural language, which is a rich medium for expressing
value-laden concepts. Natural language is particularly im-
portant when an agent must communicate back to a human
1o help provide a more accurate supervisory signal (Irving
etal., 2018; Christiano et al., 2018; Leike et al., 2018).

Natural language processing has seen substantial recent ad-
vances. One successful method has been to pretrain a large
generative language model on a corpus of unsupervised data,
then fine-tune the model for supervised NLP tasks (Dai and
Le, 2015; Peters et al., 2018; Radford et al., 2018; Khandel-
wal et al., 2019). This method often substantially outper-
forms training on the supervised datasets from scratch, and
a single pretrained language model often can be fine-tuned
for state of the art performance on manv different super-

Figure 109: OpenAl article on RLHF, January 2020

https://arxiv.org/pdf/1909.08593v2


https://arxiv.org/pdf/1909.08593v2
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Let’s take a look at how that works. Fig. 110 is the cartoon
diagram of the core ideas involved.

Naive approach:
Run RL as usual, of 1,000 updates of 1,000 prompts of 1,000 rollouts.
(cost: 1,000,000,000 scores from humans)

RLHF approach:

STEP 1:

Take 1,000 prompts, get 5 rollouts, order them from best to worst
(cost: 5,000 scores from humans)

STEP 2:

Train a neural net simulator of human preferences ("reward model")
STEP 3:

Run RL as usual, but using the simulator instead of actual humans

Figure 110: Core ideas involved in RLHF.

As I mentioned the native approach is, if we had an infinite
amount of human time at our disposal, we could run RL in
these unverified domains just fine.

For example we can run RL as usual if I have infinite human
time. I want to do 1,000 updates where each update will be
on 1,000 prompts. And in for each prompt we’re going to
have 1,000 roll-outs that we’re scoring.

So we can run RL with this kind of a setup [top of fig. 110].

The problem is in the process of doing this, I will need to
ask a human to evaluate a joke a total of 1 billion times.
That’s a lot of people looking at really terrible jokes. We
don’t want to do that.

Instead we want to take the RLHF approach.

In our RLHF approach, the core trick is that of indirection.
We're going to involve humans just a little bit. The way we
cheat is that we train a whole separate neural network that
we call a reward model.

This neural network will imitate human scores.
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So we're going to ask humans to score roll-outs. Then,
we will imitate human scores using the reward model. This
neural network will become a kind of simulator of human
preferences.

Now that we have a neural network simulator, we can do
RL against it. Instead of asking a real human, we’re asking a
simulated human for their score of a joke, as an example.

Once we have a simulator, we’re in business, because we can
query it as many times as we want. It’s a wholly automatic
process. We can now do reinforcement learning with respect
to the simulator.

The simulator, as you might expect, is not going to be
a perfect human. But if it’s at least statistically similar to
human judgment, then you might expect that this will do
something. And in practice indeed it does.

Once we have a simulator we can do RL and everything
works great.

Let me show you a cartoon diagram of what this process
looks like, fig. 111. Although the details are not 100 like
super important, it’s just a core idea of how this works. So
here I have a cartoon diagram of a hypothetical example of
what training the reward model would look like

prompt:
"write a joke about pelicans"

reward model scores: 0.1 0.8 0.3 0.4 0.5
human ordering: 2 1 3 5 4

Figure 111: How RLHF treats the pelican jokes.
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We have a prompt like "write a joke about pelicans". And
then we have five separate roll-outs. These are all five different
jokes just like the two corny ones generated by ChatGPT.

The first thing we’re going to do is ask a human to order
these jokes from best worst. The live of five green numbers
at bottom of fig. 111, are the five ranks.

The human thought that the second joke is the best, the
funniest, so it is ranked number one joke. The joke on the
left is number two. We see joke number three, joke four. The
next to last joke on the right is number five. It is the worst
joke.

We're asking humans to order instead of give scores directly,
because it’s a bit of an easier task. It’s easier for a human to
give an ordering than to give numerical scores.

Now that is the supervision for the model. The human has
ordered them and that is their contribution to the training
process.

Now separately, we're going to ask a reward model about
its scoring of these jokes.

The reward model is a wholly separate neural network, a
completely separate neural net. It’s also probably a trans-
former, but it’s not a language model in the sense that it
generates diverse language, etc. It’s just a scoring model.

So the reward model will take as an input the prompt, that’s
the first thing. Secondly it will select a candidate joke. Those
are the two inputs that go into the reward model.

For example the reward model would take the prompt and
the joke below:

Write a super funny joke about pelicans.

Why don’t pelicans ever pay for their drinks?
Because they always bill it to someone else!/®©®

The output of a reward model is a single number. This
number is thought of as a score. It can range for example
from zero to one.
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Zero would be the worst score and one would be the best
score.

In figure 111, the next to last line at bottom shows examples
of what a hypothetical reward model, at some stage in the
training process? would give to these jokes.

Giving a score of 0.1 is a very low score; 08 is a really high
score and so on.

Now we compare the scores given by the reward model with
the ordering given by the human. And there’s a precise math-
ematical way to actually calculate a loss function and calcu-
late a correspondence and update a model based on it.

But I just want to give you the intuition which is that, as
an example, in fig. 111, for this second joke the the human
thought that it was the funniest and the model kind of agreed:
08 is a relatively high score.

But this score should have been even higher. So after an
update of the reward model, we would expect that this score
actually grow maybe to, say, 0.81 or something.

For the joke on the left, the human and the reward model
actually are in big disagreement, because the human thought
that this was number two, but the reward model score is only
0.1. So the score of the joke on the left needs to be much
higher.

After an update, on top of the supervision, this might grow
to maybe 0.15 or something like that.

Then, if we look at the second joke from the right, the
human thought that it was the worst joke. But the model
actually gave it a fairly high score. So you might expect after
the update, the score would come down to maybe 3 or 3.5 or
something like that.

We're fundamentally doing what we did before, when we
were updating the parameters of our neural network in the
pre-training stage we studied a while ago. We’re slightly
nudging the predictions from the models using a neural net-
work training process: we're trying to make the reward model
scores be consistent with human ordering.
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As we update the reward model on human data it becomes
better and better simulator of the scores and orders that hu-
mans provide. Then it becomes the simulator of human pref-
erences which we can then do RL against.

But critically we’re not asking humans one billion times to
look at a joke. We're maybe looking at a thousand prompts
and five roll-outs each. So maybe 5,000 jokes that humans
have to look at in total. And they just give the ordering.
and then we’re training the model to be consistent with that
ordering.

I'm skipping over the mathematical details. I just want you
to understand the high level idea that this reward model is
basically giving us the scores. And we have a way of training
it to be consistent with human orderings.

That’s how RLHF works: we basically train simulators of
humans and RL with respect to those simulators.

02:57:58

21 Upside and downside of RLHF

Now I want to talk about the upside and downside of rein-
forcement learning from human feedback (RLHF).

RLHF upside

We can run RL, in arbitrary domains! (even the unverifiable ones)
This (empirically) improves the performance of the model, possibly due
to the "discriminator - generator gap":

In many cases, it is much easier to discriminate than to generate.

e.g. "Write a poem" vs. "Which of these 5 poems is best?"

Figure 112: RLHF upside |

99From the Excalidraw whiteboard used by the speaker, see footnote 2
page 2.
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On the upside, the first thing is that this allows us to run
reinforcement learning which we know is incredibly powerful
kind of set of techniques.

And it allows us to do it in arbitrary domains and including
the ones that are unverifiable.

So things like summarization, poem writing, joke writing or
any other creative writing really in domains outside of math
and code, etc.

Now empirically what we see when we actually apply RLHF
is that this is a way to improve the performance of the model.

I have a top answer for why that might be, but I don’t
actually know that it is like super well established on like
why this is.

You can empirically observe that when you do RLHF cor-
rectly, the models you get are a little bit better. But as to
why that is, I think is not as clear.

My best guess is that this is possibly mostly due to the
discriminator - generator gap.

What that means is that in many cases it is significantly
easier to discriminate than to generate, for humans.

In particular an example of this is, when we do supervised
fine-tuning (SFT), we're asking humans to generate the ideal
assistant response. In many cases, as I've shown — see sec-
tion 10 Post-training data (conversations), page 67 — the ideal
response is very simple to write.

But in many cases it might not be.

For example in summarization, or poem writing, or joke
writing, how are you, as a human labeler, supposed to give
the ideal response in these cases?@ It requires creative human
writing to do that.

So RLHF sidesteps this, because we ask people a signifi-
cantly easier question as data labelers. They’re not asked to

91That’s what good teachers do every day. They also ezplain to
students why one way of writing a text is better than another. See
William Zinsser, On writing well, Harper Perennial, 2006.
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write poems directly, they're just given five poems from the
model and they’re just asked to order them. That’s a much
easier task for a human labeler to do.

I think it allows to produce a lot higher accuracy data,
because we’re not asking people to do the generation task
which can be extremely difficult. We’re not asking them to do
creative writing. We're just trying to get them to distinguish
between creative writings and find the ones that are best.

That is the signal that humans are providing: the ordering.
It is their input into the system.

Then the system, in RLHF, discovers the kinds of responses
that would be graded well by humans.[g_gl That step of indi-
rection allows the models to become a bit better.

That is the upside of RLHF. It allows us to run RL. It
empirically results in better models. It allows people to con-
tribute their supervision, even without having to do very dif-
ficult tasks, like in the case of writing ideal responses.

Unfortunately RLHF also comes with significant downside.

RLHF downside

We are doing RL with respect to a lossy simulation of humans. It might
be misleading!

Even more subtle:
RL discovers ways to "game" the model.
It discovers "adversarial examples" of the reward model.

E.g. after 1,000 updates, the top joke about pelicans is not the banger

you want, but something totally non-sensical like "the the the the the
the the the".

Figure 113: RLHF downside.

92The reward model is able to find patterns — as in deep learning —
that are in the human procedures, but are not visible.
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The main one is that we are doing reinforcement learning
not with respect to humans and human judgment, but with
respect to a lossy simulation of humans. This lossy simula-
tion could be misleading, because it’s just a simulation, it’s
just a language model that’s producing scores. It might not
perfectly reflect the opinion of an actual human with an brain
in all the possible different cases. That’s the first downside,

There is actually something even more subtle and devious
going on, that really dramatically holds back RLHF as a tech-
nique that we can really scale to significantly smart systems.

It is that reinforcement learning is extremely good at dis-
covering a way to game the model, to game the simulation.

This reward model that we’re constructing here, fig. 111,
p- 173, that gives the scores... these models are transformers.

These transformers are massive neural nets. They have
billions of parameters and they imitate humans. But they do
S0 in a simulation way.

Now the problem is that these are massive complicated sys-
tems, there’s a billion parameters here that are outputting a
single score.

It turns out that there are ways to game these models.

You can find kinds of inputs that were not part of their
training set. And these inputs inexplicably get very high
scores, but in a fake way.

Very often what you find if you run RLHF for very long,
for example if we do 1,000 updates, which is a lot of updates,
you might expect that your jokes are getting better and that
you’re getting real bangers about pelicans.

But that’s not exactly what happens. What happens is
that in the first few hundred steps the jokes about pelicans
are probably improving a little bit. Then they actually dra-
matically fall off the cliff and you start to get extremely non-
sensical results.

For example the top joke about pelicans starts to be "the
the the the the the the the". And this makes no sense. When
you look at it, why should this be a top joke?
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But when you take "the the the the the the..." and you plug
it into your reward model, you'd expect score of zero. But
actually the reward model loves this as a joke. It will tell you
"that the the the..." has a score of 1.0. This is a top joke.
And this makes no sense.

It’s because these models are just simulations of humans
and they’re massive neural nets, and you can find inputs at
the bottom that get into the part of the input space that gives
you nonsensical results.

These examples are what’s called adversarial examples and
I’'m not going to go into the topic too much.

But these are adversarial inputs to the model. They are
specific little inputs that go between the nooks and crannies
of the model and give nonsensical results at the top.

Now here’s what you might imagine doing. You say: okay
"the the the..." is obviously not a score of 1. It’s obviously a
low score.

So let’s take "the the the the the..." Let’s add it to the data
set and give it a ranking that is extremely bad — like a ranking
of five in our example.

Your model will learn that "the the the the..." should have
a very low score. It will give it score of zero.

The problem is that there will always be an infinite number
of nonsensical adversarial examples hiding in the model.

If you iterate this process many times and you keep adding
nonsensical stuff to your reward model, and giving it very low
scores, you'll never win the game.

You can do this many many rounds, and reinforcement
learning, if you run it long enough, will always find a way
to game the model. It will discover adversarial examples. It
will get really high scores with nonsensical results.

And fundamentally this is because our scoring function is
a giant neural net and RL is extremely good at finding just
the ways to trick it.
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So to make a long story short, you always run RLHF for
maybe a few hundred updates; the model is getting better;
and then you have to crop it. And you are done.

You can’t run too much using this reward model, because
the optimization will start to go awry. So you basically crop
it, and you call it and you ship it.

You can improve the reward model, but you’ll come across
these situations eventually at some point.

So RLHF... basically what I usually say is that RLHF is
not RL.

And what I mean by that is: RLHF is RL obviously, but
it’s not RL in the magical sense. This is not RL that you can
run indefinitely.

These kinds of problems where you are getting concrete
correct answer (see fig. 87, p. 141) you cannot game this as
easily.@ You either got the correct answer or you didn’t. And
the scoring function is much simpler. You’re just looking at
the boxed area and seeing if the result is correct. So it’s very
difficult to game these functions. But gaming a reward model
is possible.

Now in these verifiable domains you can run RL indefinitely.
You could run for tens of thousands, hundreds of thousands
of steps and discover all kinds of really crazy strategies, that
we might not even ever think about, of performing really well
for all these problems.

9%In this context, the speaker uses “to game” in the standard informal
sense of “to exploit” or “to trick” a system to get favorable results without
genuinely solving the underlying problem.

When he says “you can’t game this as easily” or “it’s possible to game
the reward model,” he means:

e In tasks where the answer can be objectively verified (like math
or code), the model either gets it right or wrong — there’s no
easy way to “cheat.”

e But in unverifiable tasks (likecreative writing, or producing jokes),
models can “game” the system — that is, produce outputs that
look good according to a flawed or subjective reward model, with-
out truly understanding or reasoning correctly.
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In the game of Go there’s no way to to tricking the winning
of a game or the losing of a game. We have a perfect simulator.
We know here all the stones are placed. And we can calculate
whether someone has won or not. There’s no way to game
that. So you can do RL indefinitely. And you can eventually
beat even Lee Sedol.

But with models in unverifiable domains, which are game-
able, you cannot repeat this process indefinitely.

So I see RLHF as not real RL, because the reward function
is gameable. It’s more like in the realm of little fine-tuning.
It’s a little improvement. But it’s not something that is funda-
mentally set up correctly, where you can insert more compute,
run for longer, and get much better and magical results. I's
not RL in that sense, because it lacks magic. It can fine-tune
your model and get a better performance.

And indeed if we go back to ChatGPT

Emily buys 3 apphes and 2 cranges. Each ccange costs $2. The total
<cost of ol the fruit is $13. What is the cost of each spphe?

© Reasoned for a cougle of soconds A
Identifying codts
I started by satting the scph costas . Soving 3r + 4 « 13gavexr « 3
Brealing down the costs

I verifnd the formula by caloulating the totsl frut cost. With oranges ot $4, appies were priced
at 39, oguating to $3 each

Lot the cost of each acpie be r dollars. Then the total cost & ghamn by the eguation
Sr+2x2=13
Since each orange 00sts 2 dollars, the 0ost 10 OCaNpes i

2 x 2 = 4 dollars

Scbatitute f20 the equAbion:

Iz+4=13
Subtract 4 from both sides:
3r=9
Divicie ty 3:
xr=3
Trus, each apple costs 3 dofars.

Figure 114: GPT 4o solution of Emily’s problem.
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the GP'T 40 model has gone through RLHF because it works
well but it’s just not RL in the same sense.

RLHF is like a little fine tuning that slightly improves your
model. That is the way T would think about it.

03.06.57

We have covered most of the technical content I wanted
to cover. [ took you through the three major stages and
paradigms of training these models:

1. pre-training
2. supervised fine tuning

3. reinforcement learning

I showed you that they loosely correspond to the process we
already use for teaching children (see the textbook in figure
81, page 131).

1. pre-training is like the basic knowledge acquisition of
reading exposition

2. supervised fine tuning is the process of looking at lots
and lots of worked examples and imitating experts

3. reinforcement learning is the practice problems

The only difference is that we now have to effectively write
textbooks for LLLMs and Al across all the disciplines of human
knowledge, and also in all the cases where we actually would
like them to work, like code and math, and basically all the
other disciplines.

So we're in the process of writing textbooks for them, re-
fining all the algorithms that I’ve presented on the high level,
and then of course doing a really good job at the execution
of training these models at scale and efficiently.
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I didn’t go into too many details, but the pre-training con-
sists of extremely large and complicated distributed jobs that
have to run over tens of thousands or even hundreds of thou-
sands of GPUs.

And the engineering that goes into this is really at the state-
of-the art of what’s possible with computers at that scale.

I didn’t cover that aspect too much but this is very seri-
ous and they were underlying ultimately all these very simple
algorithms that we saw.

I also talked about the theory of mind a little bit of these
models.

The thing I want you to take away s that these LLMs are re-
ally good, but they’re extremely useful as tools for your work.

You shouldn’t trust them fully and I showed you some ex-
amples of that.

Even though we have mitigations for hallucinations, the
models are not perfect and they will hallucinate still.

It’s gotten better over time and it will continue to get bet-
ter, but they can hallucinate.

In other words, in addition to that I covered what I call the
Swiss cheese model of LLM capabilities that you should have
in your mind.

Swiss cheese model of LLM capabilities of current models:

- some things work really well,
- some things (almost at random) show brittleness.

Figure 115: Swiss model of LLMs.
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The models are incredibly good across so many different dis-
ciplines, but then fail almost randomly in some unique cases.

For example: what is bigger, 9.11 or 9.97 (see p. 127) — the
model doesn’t know.

But simultaneously it can turn around and solve Olympiad
questions,

So this is a hole in the Swiss cheese. And there are many
of them. And you don’t want to trip over them.

So don’t treat these models as infallible models. Check
their work. Use them as tools. Use them for inspiration. Use
them for the first draft. But work with them as tools. And
be ultimately responsible for the product of your work.

That’s what T wanted to talk about. This is how they're
trained. And this is what they are.

03:09:41

22 Preview of things to come

Let’s turn to what are some of the future capabilities of
these models, probably what’s coming down the pipe. And
also where can you find these models 7

94 A recent large language model (LLM) developed by OpenAl was
able to solve several problems from the 2025 International Mathematical
Olympiad (IMO), including the following example:

Example IMO Problem (2025):

Given are positive integers a, b, ¢ such that a + b + ¢ = 2025. Prove
that:

a+b+c>3
b+c c¢c4+a a+b T 2

OpenAT’s LLM produced a valid proof for this inequality and similar
problems directly in natural language, under official competition rules
("pen and paper" style reasoning, no internet, complete explanations).
The model’s solutions were scored by IMO medalists, who confirmed
their correctness.

This achievement demonstrates the model’s ability to handle IMO-
level contest mathematics with creative multi-step reasoning, previously
thought to be beyond the reach of neural networks.
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I have a few bullet points on some of the things that you
can expect coming down the pipe.

PREVIEW OF THINGS TO COME

- multimodal (not just text but audio, images, video, natural conversations)
- tasks -> agents (long, coherent, error-correcting contexts)

- pervasive, invisible

- computer-using

- test-time training?, etc.

Figure 116: Preview of things to comeP-_s]

The first thing you’ll notice is that the models will very
rapidly become multimodal. Everything I talked about above
concerned text, but very soon we’ll have LLMs that can not
just handle text, but they can also operate natively and very
easily over audio, so they can hear and speak, and also images,
so they can see and paint.

We're already seeing the beginnings of all of this, but this
will be all done natively inside the language model. And this
will enable kind of like natural conversations

Roughly speaking the reason that this is actually no differ-
ent from everything we’ve covered above, is that as a baseline
you can tokenize audio and images and apply the exact same
approaches of everything that we’ve talked about above.

So it’s not a fundamental change. It’s just we have to add
some tokens.

As an example for tokenizing audio, we can look at slices
of the spectrogram of the audio signal. And we can tokenize
that, and just add more tokens that suddenly represent audio
and just add them into the context windows and train on
them just like above.

The same for images, we can use patches. And we can
separately tokenize patches. And then what is an image? An

9 From large Excalidraw whiteboard, see footnote nr 2 page 2.
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image is just a sequence of tokens. And this actually works.
And there’s a lot of early work in this direction.

So we can just create streams of tokens that are represent-
ing audio, images, as well as text, and intersperse them and
handle them all simultaneously in a single model. So that’s
one example of multimodality.

Secondly, something that people are very interested in is
this: currently most of the work is that we're handing in-
dividual tasks to the models on a silver platter, like "please
solve this task for me". And the model does this little task.

But it’s up to us to still organize a coherent execution of
tasks to perform jobs.

The models are not yet at the capability required to do this
in a coherent error correcting way over long periods of time.
They’re not able to fully string together tasks to perform
these longer running jobs. But they’re getting there and this
is improving over time.

Probably what’s going to happen here is we shall start to
see what’s called agents which perform tasks over time. And
you, you supervise them and you watch their work and they
come up to once in a while report progress and so on.

So we’re going to see more long running agents tasks that
don’t just take a few seconds of response, but many tens of
seconds or even minutes or hours over time [’

But these models are not infallible as we talked about above.
So all of this will require supervision.

For example, in factories people talk about the human to
robot ratio for automation. 1 think we're going to see some-
thing similar in the digital space, where we are going to be
talking about human to agent ratios — where humans becomes
a lot more supervisors of tasks carried out by agents, in the
digital domain.

9 Computer programs in the first domain of computer science have
been doing this for decades (see footnote 63, page 113). However, they
are entirely programmed and controlled by humans. LLMs, by contrast,
have much greater freedom to operate, explore, discover, and come up
with unexpected results.
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Next, I think everything is going to become a lot more
pervasive and invisible. It will be integrated into the tools
and everywhere and, in addition, computer using.

Right now these models aren’t able to take actions on your
behalf. If you remember when we saw ChatGPT launch the
operator, that’s one early example of that, where you can
actually hand off control to the model to perform keyboard
and mouse actions on your behalf. That’s also something that
I think is very interesting.

The last point I have here (fig. 116) is a general comment
that there’s still a lot of research to potentially do in this
domain.

One example is something along the lines of test time train-
ing. Remember that everything we’ve done above and that
we talked about has two major stages.

e There’s first the training stage where we tune the pa-
rameters of the model to perform the tasks well.

e Once we get the parameters, we fix them. And then we
deploy the model for inference.

From there the model is fixed. It doesn’t change anymore.
Tt doesn’t learn from all the stuff that it’s doing at test time[”’|
It has a fixed collection of parameters. The only thing that
is changing is now the token inside the context windows.

So the only type of learning or test time learning that the
model has access to is in-context learning of its dynamically

97This is a major difference from humans. Once they have acquired
a know-how and begin using it, people continue to develop new knowl-
edge and skills through practice. Not so with LLMs. It can be very
frustrating for users to show a model something, only for it to ignore
that input beyond the current session. Once the conversation ends, ev-
erything demonstrated to the model is erased from its memory. LLMs
could advance tremendously if they were able to learn from such working
interactions with humans. But that remains a difficult goal: it would
require modifying the model’s parameters and filtering out malicious or
ill-intentioned information.
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adjustable context window depending on what it’s doing at
test time.

I think this is still different from humans who actually are
able to actually learn depending on what they’re doing — es-
pecially when you sleep for example, when your brain is up-
dating your parameters or something like that. There’s no
equivalent of that currently in these models and tools.

There’s a lot more wonky ideas I think that are to be ex-
plored still.

I think that it will be necessary because the context win-
dow is a finite and precious resource, and especially once
we start to tackle very long running multimodal tasks and
we’re putting in videos and these token, windows will grow
extremely large, like not thousands or even hundreds of thou-
sands but significantly beyond that. The only kind of trick we
have available to us right now is to make the context windows
longer. But I think that that approach by itself will not scale
to actual long running tasks that are multimodal over time.

So new ideas are needed in some of those disciplines, in
some of those kind of cases, in the main, where these tasks
are going to require very long contexts.

Those are some examples of some of the things you can ex-
pect coming down the pipe.

03:15:15

23 Keeping track of LLMs

Let’s turn to where you can keep track of this progress.

WHERE TO KEEP TRACK OF THEM
- reference https://lmarena.ai/

- subscribe to https:/buttondown.com/ainews
- X/ Twitter

Figure 117: Keeping track of LLMs.
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How to keep up to date with the latest and the greatest of
what’s happening in the field?

The three resources that I have consistently used to stay
up to date are

1. El Marena
2. Subscriptions

3. X/Twitter

Number one: El Marena. Let me show you what it is.

Tieaderbord A [

T chatbot Arena LLM Leaderboard: Community-driven Evaluation for Best LLM and Al chatbots

38 UC Berkaley Skytab and Lrens. With over 1,000,0

Terry model o generate live lesderbasrds. For technical detit,check out our

rena: s Imarenaai - A Batte to build the best website!

‘Overall Questions

vt . SofeConuol . Show Deprecated ¥models: 197 (100%)  Avotes: 2,604,203 (100%)
s - Nodod S 95w 1 + Votes Oxgantzation
(stylect) Score
ing-Exp-01:21 1384 /-5 9649 Google

173 a3 23766 Google
924:11:20 1365 ‘34 37760 OpenaT
1361 -8 4195 DeepSeek
1356 sas-a 22591 Google
1352 67 11637 OponaT

1338 w34 3 OpenaL

132 EEVRTY 2787 Alibaba

Figure 118: https://lmarena.ai/ accessed in February 2025@

This is an LLM leader board. It ranks all the top mod-
els. The ranking is based on human comparisons. Humans
prompt these models and they get to judge which one gives
a better answer. They don’t know which model is which.
They’re just looking at which model is the better answer.

You can calculate a ranking. Then you get some results.

9®larger figure https://lapasserelle.com/documents/fig_118.png
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What you can see in fig. 118 is the different organizations,
like Google Gemini for example, that produce these models.

When you click on any one of these, it takes you to the
place where that model is hosted, and it opens on their main
page.

We see that Google is currently on top with OpenAl right
behind. We see DeepSeek in position number three.

The reason this is a big deal is the last column in fig. 118.
You see license: DeepSeek is an MIT license model "]

It’s open weights. Anyone can use these weights. Anyone
can download them. Anyone can host their own version of
Deep seek. And they can use it in what whatever way they
like. It’s not a proprietary model, the sources of which you
would not have access to. It’s an open weight release. It is
kind of unprecedented that a model this strong was released
with open weights so pretty cool from the team.

Next down we have a few more models from Google and
OpenAl. Then when you continue to scroll down, you start
to see some other Usual Suspects. So xAl, then Anthropic
with Sonnet, at number 14. Then Meta with Llama, etc.

Llama, similar to DeepSeek, is an open weights model, but
it’s down the list as opposed to near the top.

Now I will say that this leader board was really good for a
long time. I do think, however, that in the last few months
it’s become a little bit gamed (= tricked). And I don’t trust
it as much as I used to.

Just empirically T think that a lot of people for example

are using a Sonnet from Anthropic. It is a really good model.
Yet it’s all the way down here in number 14.

9DeepSeek is a Chinese Al company based in Hangzhou. However,
as noted in section 18, page 145, it has released its model. DeepSeek-R1
was released under the MIT open-source license. Many companies have
since downloaded the model in full, and it can be run independently
without visiting any Chinese website. According to the LM Arena site,
institutions such as MIT use DeepSeek-R1 for research and benchmark-
ing purposes, but they do so under the model’s open-source MIT license
rather than through a special agreement.
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Conversely I think not as many people are using Gemini as
its ranking — at the top of the list — would suggest[[0"|

So, use El Marena ranking as a first pass. But try out a
few of the models for your tasks and see which one performs
better.

The second thing that I would point to is Al newsletter.

Al News

We summarize top Al discords + Al reddits + Al X/Twitters, and send you a roundup
each day! See archive for examples.

"Highest-leverage 45 mins I spend everyday” - Soumith
"best Al newsletter atm"” and "I'm not sure that enough people subscribe” - Andrej
"genuinely incredible® - Chris

“surprisingly decent” - Hamel

A smol service by @swyx and other Latent.Space friends!

You can pay for a customizable version here, and see g chunked/embedded search from
Airtrain. Thanks to Pigter Levels for the Lex Fridman feature!

Figure 119: AI newsletter https://buttondown.com/ainews!|

Al News is not very creatively named but it is a very good
newsletter produced by swnyEl and friends. So thank you
for maintaining it. It’s been very helpful to me because it is
extremely comprehensive.

100For instance, the transcriber cancelled his subscription to Gemini
after the model, in response to prompts like "tell me the end of such and
such [famous and well known| novel", invented new endings different
from what everybody knows.

101Ghawn Wang, better known by his online handle "swyx", is a
Singapore-born software engineer, writer, and Al educator, formerly at
AWS and Temporal, and now known for his projects Latent Space, AI
Engineer, and his widely read AI News and DevTools newsletters.
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If you go to archives, you’ll see that it is produced almost
every other day. Some of it is written by humans and curated
by humans, but a lot of it is constructed automatically with
LLMs. So you’re probably not missing anything major if you
go through it. Of course you’re probably not going to go
through it because it’s so long, but these summaries all the
way up top are quite good and, I think, are produced under
some human supervision. So this has been very helpful to me.

The last source I would point to is just X (ex-Twitter). A
lot of AT happens on X and so you can just follow people who
you like and trust and get all your latest and greatest uh on
X as well.

Those are the major places that have worked for me over
time.

03:18:34

24 Where to find LLMs

Finally a few words on where you can find the models and
where can you use them.

WHERE TO FIND THEM

- Proprietary models: on the respective websites of the LLM providers
- Open weights models (DeepSeek, Llama): an inference provider, e.g. TogetherAl
- Run them locally! LMStudio

Figure 120: Where to find LLMs.

The first one I would say is for any of the biggest propri-
etary models, you just have to go to the website of that LLM
provider.

For example for OpenAl, https://chatgpt.com/, or sim-
ply https://chat.com/|1 believe actually works now.

For Gemini, it’s https://gemini.google.com or https:

//aistudio.google.com/. They have two for some reason I
don’t really understand. No one does.


https://chatgpt.com/
https://chat.com/
https://gemini.google.com
https://aistudio.google.com/
https://aistudio.google.com/
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For open-weights models like DeepSeek or Llama and oth-
ers, you typically have to go through an inference provider —
that is, a hosting service that runs the models and exposes
them through an APIL

My favorite is https://together.ai :

@ (5 _ssitopmtnr sty et SamafUsma-33-708-Intrect Tt DK

together.ai DABEORD  PLAYGROUNK wuaumRs  uoons ons  awncs  oocs (@)

® CHAT | mocwdamtims-33.708 e Tt

Figure 121: Playground of together.ai

I showed you that when you go to the playground of to-
gether.ai, you can pick among lots of different models (with
the drop-down menu on the right of the scree). All of these
are open models of different types and you can talk to them
here |in the CHAT window| as an example.

If you want to use a base model (as opposed to a fine-tuned
assistant model), it is a bit harder to find those on major
inference providers. Most hosting platforms focus on chat or
assistant models, not the raw base versions. For example, 1
could not find many base models on the usual providers.

That is why, when I need a base model, I usually go to Hy-
perbolic (https://www.hyperbolic.ai/)), because they host
the Llama 3.1 base model, which I really like. You can inter-
act with it directly on their site. As far as I know, Hyperbolic
is one of the better places to access a base model, and I wish


https://together.ai
together.ai
https://www.hyperbolic.ai/
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more providers would host them since they are quite valuable
and interesting to work with in certain cases.

Finally, you can also use some of the smaller models and
run them locally. For example, with DeepSeek, you will not
be able to run the largest model on your MacBook, but there
are smaller versions of the DeepSeek model, known as distilled
versions. You can also run these models at lower precision —
not at the native precision used by the full models, like FP8
for DeepSeek or BF16 for Llama, but at much lower precision
levels.

Don’t worry if you don’t fully understand those details.
You can run smaller versions of these models that have been
distilled and that operate at even lower precision. This allows
them to fit on your computer, so you can actually run fairly
capable models on your laptop.

My favorite place to go is usually LM Studio (https://
lmstudio.ai/), which is an app you can download.

Figure 122: LM Studio.


https://lmstudio.ai/
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196 Large Language Models

I find the interface ugly, and I don’t like that it displays so
many models that aren’t particularly useful — since, in truth,
everyone just wants to run DeepSeek.

I don’t know why they give you these 500 different types
of models — they’re really complicated to search for, and
you have to choose between different distilled versions and
different precisions, which is all very confusing. But once you
actually understand how it works (which would need a whole
separate video), you can load up a model — for example, here
I loaded Llama 3 Instruct 1 Billion — and you can just have
a conversation with it.

I asked for a pelican joke:

USER: Write a joke about a pelican
Al: Here’s one:
Why did the pelican go to the doctor?

Because it had a fowl cough! (get it?)
I asked for another one:

USER: Another one
Al: Why did the pelican go to therapy?

Because it was having a beak-full of issues.

And it gave me another one etc.

To do this, you first need to download and install LM Stu-
dio and the specific model you want to use. After that, all
processing happens locally on your computer; nothing is sent

elsewhere — everything runs directly on your MacBook Pro’s
GPU.

That’s very convenient, and when you’re done, you can eject
the model to free up RAM. So LM Studio is probably my
favorite tool, even though I think it has quite a few User In-
terface issues and User Experience issues and seems geared
more toward professionals. Still, if you watch a few tutori-
als on YouTube, you can figure out how to use its interface.
Those are just a few notes on where to find and use these
models.
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03:21:46

25 Grand summary

Let me loop back to where we began. The question was:
when we go to ChatGPT, enter a query, and hit “Go,” what
exactly happens? What are we seeing and interacting with?
How does it all work? I hope this explanation has given you
a sense of what’s happening under the hood — how these
models are trained and what’s actually returned to us.

When you type your query, it’s first broken down into to-
kens. This tokenization step transforms the input into smaller
pieces — subword units that the model can process. Your
prompt fits into a special conversation format that structures
dialog between the user and the assistant. The model receives
this formatted prompt as a one-dimensional sequence of to-
kens. When you press “Go,” the model begins generating out-
put by continuing that sequence—predicting the next token,
one after another, like an intelligent autocomplete system.

Now, why does the model choose these particular tokens,
and where do they come from? That takes us into how
these systems are built. The process consists of three main
stages. The first, pre-training, is devoted to knowledge acqui-
sition—absorbing information from a large portion of the in-
ternet into the model’s parameters. The second stage, super-
vised fine-tuning, is where personality and behavior emerge.
Companies like OpenAl create massive datasets of dialogues
between a human and an assistant [they are entirely created
by humans — the human sentences and the assistant sen-
tences|. And human labelers craft ideal responses from the
assistant, following precise guidelines. The model learns from
these examples how to respond appropriately to any prompt.

So what’s really happening when you get a reply? Think
of it as a simulation of one of those OpenAl labelers, trained
to write the best possible response. The model doesn’t think
like a human — it’s performing a constrained mathematical
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computation to predict tokens. Each token generation is a
finite procedure, a lossy simulation of reasoning, not genuine
cognition. Because of that limitation, models sometimes make
errors or “hallucinate.” Their abilities resemble Swiss cheese
— impressive, but with holes that cause unexpected mistakes.

Despite those flaws, recent “thinking models” such as ol-mini
or o3-mini [of OpenAl| go a step further. Unlike GPT-4
Turbo, which mainly uses supervised fine-tuning (SF'T), these
newer models also undergo reinforcement learning (RLHF).
This third training stage helps them develop reasoning strate-
gies — patterns that resemble step-by-step internal mono-
logue. They practice solving many problems curated by hu-
man researchers, evolving novel reasoning techniques. When
you ask such a model a question, you’re not just interacting
with a simulated human annotator; you're seeing early signs
of genuine reasoning, an emergent ability born from this re-
inforcement process.

That said, reinforcement learning is still primitive. We’re
seeing its early, experimental form. These models can show
flashes of insight — doing something creative or reasoning
in ways no human has taught them — but it’s just a begin-
ning. Their strengths shine in verifiable domains like math
and code, while their transfer to open-ended tasks such as cre-
ative writing remains uncertain. Researchers still don’t fully
know how far those reasoning skills can generalize to areas
where correctness isn’t measurable.

Overall, it’s an extraordinarily exciting time for Al. Per-
sonally, I use these models every day, often dozens or even
hundreds of times, because they dramatically accelerate my
work. Used wisely — as tools rather than authorities — they
can be transformative. Always verify their outputs, since even
the best can make random errors, miscount, or hallucinate
facts. But if you leverage them thoughtfully — for drafting,
exploring ideas, or refining your work — these systems can
make you far more productive.

I hope that this video was useful and interesting to you,
and that you had fun watching it.
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