
Lecture 1: Equivalence Principle

and Tensor Analysis

Andy: So if I am in an elevator and I feel really heavy, I can't
know whether the elevator is accelerating or you mischievously put
me on Jupiter?

Lenny: That's right, you can't.

Andy: But, at least on Jupiter, if I keep still, light rays won't
bend.

Lenny: Oh yes they will.

Andy: Hmm, I see.

Lenny: And if you are falling into a black hole, beware, things will
get really strange. But, don't worry, I'll shed some light on this.

Andy: Er, bent or straight?
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Introduction

General Relativity is the fourth volume in The Theoretical Mini-
mum (TTM) series. The �rst three were devoted respectively
to classical mechanics, quantum mechanics, and special relativity
and classical �eld theory. The �rst volume laid out the Lagrangian
and Hamiltonian description of physical phenomena and the prin-
ciple of least action, which is one of the fundamental principles
underlying all of physics (see volume 3, lecture 7 on fundamental
principles and gauge invariance). They were used in the �rst three
volumes and will continue in this and subsequent ones.

Physics extensively uses mathematics as its toolbox to construct
formal, quanti�able, workable theories of natural phenomena. The
main tools we used so far are trigonometry, vector spaces, and
calculus, that is, di�erentiation and integration. They have been
explained in volume 1 as well as in brief refresher sections in the
other volumes. We assume that the reader is familiar with these
mathematical tools and with the physical ideas presented in vol-
umes 1 and 3. The present volume 4, like volumes 1 and 3 (but
unlike volume 2), deals with classical physics in the sense that no
quantum uncertainty is involved.

We also began to make light use of tensors in volume 3 on special
relativity and classical �eld theory. Now with general relativity we
are going to use them extensively. We shall study them in detail.
As the reader remembers, tensors generalize vectors. Just as vec-
tors have di�erent representations, with di�erent sets of numbers
(components of the vector) depending on the basis used to chart
the vector space they form, this is true of tensors as well. The
same tensor will have di�erent components in di�erent coordinate
systems. The rules to go from one set of components to another
will play a fundamental role. Moreover, we will work mostly with
tensor �elds, which are sets of tensors, a di�erent tensor attached
to each point of a space. Tensors were invented by Ricci-Curbastro
and Levi-Civita1 to develop work of Gauss2 on curvature of sur-

1Gregorio Ricci-Curbastro (1853�1925) and his student Tullio Levi-Civita
(1873�1941) were Italian mathematicians. Their most important joint paper
is �Méthodes de calcul di�érentiel absolu et leurs applications,� in Mathema-

tische Annalen 54 (1900), pp. 125�201. They did not use the word tensor,
which was introduced later by other people.

2Carl Friedrich Gauss (1777�1855), German mathematician.
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faces and Riemann3 on non-Euclidean geometry. Einstein4 made
extensive use of tensors to build his theory of general relativity.
He also made important contributions to their usage: the stan-
dard notation for indices and the Einstein summation convention.

In Savants et écrivains (1910), Poincaré5 writes that �in mathe-
matical sciences, a good notation has the same philosophical im-
portance as a good classi�cation in natural sciences.� In this book
we will take care to always use the clearest and lightest notation
possible.

Equivalence Principle

Einstein's revolutionary papers of 1905 on special relativity deeply
clari�ed and extended ideas that several other physicists and math-
ematicians � Lorentz,6 Poincaré, and others � had been working
on for a few years. Einstein investigated the consequences of the
fact that the laws of physics, in particular the behavior of light,
are the same in di�erent inertial reference frames. He deduced
from that a new explanation of the Lorentz transformations, of
the relativity of time, of the equivalence of mass and energy, etc.

After 1905, Einstein began to think about extending the principle
of relativity to any kind of reference frames, frames that may be
accelerating with respect to one another, not just inertial frames.
An inertial frame is one where Newton's laws, relating forces and
motions, have simple expressions. Or, if you prefer a more vivid
image, and you know how to juggle, it is a frame of reference in
which you can juggle with no problem � for instance in a rail-
way car moving uniformly, without jerks or accelerations of any
sort. After ten years of e�orts to build a theory extending the
principle of relativity to frames with acceleration and taking into
account gravitation in a novel way, Einstein published his work
in November 1915. Unlike special relativity, which topped o� the
work of many, general relativity is essentially the work of one man.

3Bernhard Riemann (1826�1866), German mathematician.
4Albert Einstein (1879�1955), German, Swiss, German again, and �nally

American physicist.
5Henri Poincaré (1854�1912), French mathematician.
6Hendrik Antoon Lorentz (1853�1928), Dutch physicist.
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We shall start our study of general relativity pretty much where
Einstein started. It was a pattern in Einstein's thinking to start
with a really simple elementary fact, which almost a child could
understand, and deduce these incredibly far-reaching consequences.
We think that it is also the best way to teach it, to start with the
simplest things and deduce the consequences.

So we shall begin with the equivalence principle. What is the
equivalence principle? It is the principle that says that gravity
is in some sense the same thing as acceleration. We shall explain
precisely what is meant by that, and give examples of how Einstein
used it. From there, we shall ask ourselves: what kind of mathe-
matical structure must a theory have for the equivalence principle
to be true? What kind of mathematics must we use to describe it?

Most readers have probably heard that general relativity is a the-
ory not only about gravity but also about geometry. So it is
interesting to start at the beginning and ask what is it that led
Einstein to say that gravity has something to do with geometry.
What does it mean to say that �gravity equals acceleration�? You
all know that if you are in an accelerated frame of reference, say,
an elevator accelerating upward or downward, you feel an e�ective
gravitational �eld. Children know this because they feel it.

What follows may be overkill, but making some mathematics out
of the motion of an elevator is useful to see in a very simple exam-
ple how physicists transform a natural phenomenon into math-
ematics, and then to see how the mathematics is used to make
predictions about the phenomenon.

Before proceeding, let's stress that the following study on an el-
evator, and the laws of physics as perceived inside it, is simple.
Yet it is a �rst presentation of very important concepts. It is
fundamental to understand it very well. Indeed, we will often re-
fer to it. In lectures 4 to 9, it will strongly help us understand
acceleration, gravitation, and how gravitation �warps� space-time.

So let's imagine the Einstein thought experiment where somebody
is in an elevator; see �gure 1. In later textbooks, it got promoted
to a rocket ship. But I have never been in a rocket ship, whereas
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I have been in an elevator. So I know what it feels like when it
accelerates or decelerates. Let's say that the elevator is moving
upward with a velocity v.

Figure 1: Elevator and two reference frames.

So far the problem is one-dimensional. We are only interested in
the vertical direction. There are two reference frames: one is �xed
with respect to Earth. It uses the coordinate z. The other is �xed
with respect to the elevator. It uses the coordinate z′. A point P
anywhere along the vertical axis has two coordinates: coordinate
z in the stationary frame, and coordinate z′ in the elevator frame.
For instance, the �oor of the elevator has coordinate z′ = 0. Its
z-coordinate is the distance L, which is obviously a function of
time. So we can write for any point P

z′ = z − L(t) (1)

We are going to be interested in the following question: if we know
the laws of physics in the frame z, what are they in the frame z′?

One warning about this lecture: at least at the start, we are going
to ignore special relativity. This is tantamount to saying that we
are pretending that the speed of light is in�nite, or that we are
talking about motions so slow that the speed of light can be re-
garded as in�nitely fast. You might wonder: if general relativity
is the generalization of special relativity, how did Einstein man-
age to start thinking about general relativity without including
special relativity?
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The answer is that special relativity has to do with very high ve-
locities, while gravity has to do with heavy masses. There is a
range of situations where gravity is important but high velocities
are not. So Einstein started out thinking about gravity for slow
velocities, and only later combined it with special relativity to
think about the combination of fast velocities and gravity. And
that became the general theory.

Let's see what we know for slow velocities. Suppose that z′ and
z are both inertial reference frames. That means, among other
things, that they are related by uniform velocity:

L(t) = vt (2)

We have chosen the coordinates such that when t = 0, they line
up. At t = 0, for any point, z and z′ are equal. For instance, at
t = 0 the elevator's �oor has coordinate 0 in both frames. Then
the �oor starts rising, its height z equaling vt. So for any point
we can write equation (1). In view of equation (2), it becomes

z′ = z − vt (3)

Notice that this is a coordinate transformation involving space
and time. For readers who are familiar with volume 3 of TTM on
special relativity, this naturally raises the question: what about
time in the reference frame of the elevator? If we are going to
forget special relativity, then we can just say that t′ and t are the
same thing. We don't have to think about Lorentz transforma-
tions and their consequences. So the other half of the coordinate
transformation would be t′ = t.

We could also add to the stationary frame a coordinate x going
horizontally and a coordinate y jutting out of the page. Corre-
spondingly, coordinates x′ and y′ could be attached to the eleva-
tor; see �gure 2. The x-coordinate will play a role in a moment
with a light beam. As long as the elevator is not sliding horizon-
tally, x′ and x can be taken to be equal. Same for y′ and y.

For the sake of clarity of the drawing in �gure 2, we o�set a bit the
elevator to the right of the z-axis. But think of the two vertical
axes as actually sliding on each other, and at t = 0 the two origins
O and O′ coincide. Once again, the elevator moves only vertically.
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Figure 2: Elevator and two reference frames, three axes in each case.

Finally our complete coordinate transformation is

z′ = z − vt

t′ = t

x′ = x

y′ = y

(4)

It is a coordinate transformation of space-time coordinates. For
any point P in space-time, it expresses its coordinates in the mov-
ing reference frame of the elevator as functions of its coordinates
in the stationary frame. It is rather trivial. Only one coordinate,
namely z, is involved in an interesting way.

Let us look at a law of physics expressed in the stationary frame.
Take Newton's law of motion F = ma applied to an object or a
particle. The acceleration a is z̈, where z is the vertical coordinate
of the particle. So we can write

F = mz̈ (5)

As we know, z̈ is the second time derivative of z with respect to
time � it is called the vertical acceleration � and F of course is
the vertical component of force. The other components we will
take to be zero. Whatever force is exerted, it is exerted verti-
cally. What could this force be due to? It could be related to
the elevator or not. There could be some charge in the elevator
pushing on the particle. Or it could just be a force due to a rope
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attached to the ceiling and to the particle that pulls on it. There
could be a �eld force along the vertical axis. Any kind of force
could be acting on the particle. Whatever the causes, we know
from Newton's law that the equation of motion of the particle, ex-
pressed in the original frame of reference, is given by equation (5).

What is the equation of motion expressed in the primed frame?
This is very easy. All we have to do is �gure out what the original
acceleration is in terms of the primed acceleration. What is the
primed acceleration? It is the second derivative with respect to
time of z′. Using the �rst equation in equations (4)

z′ = z − vt

one di�erentiation gives

ż′ = ż − v

and a second one gives
z̈′ = z̈

The accelerations in the two frames of reference are the same.

All this should be familiar. But I want to formalize it to bring out
some points. In particular, I want to stress that we are doing a
coordinate transformation. We are asking how the laws of physics
change in going from one frame to another. What can we now
say about Newton's law in the primed frame of reference? We
substitute z̈′ for z̈ in equation (5). As they are equal, we get

F = mz̈′ (6)

We found that Newton's law in the primed frame is exactly the
same as Newton's law in the unprimed frame. That is not sur-
prising. The two frames of reference are moving with uniform
velocity relative to each other. If one of them is an inertial frame,
the other is an inertial frame. Newton taught us that the laws of
physics are the same in all inertial frames. It is sometimes called
the Galilean principle of relativity . We just formalized it.

Let's turn to an accelerated reference frame.
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Accelerated Reference Frames

Suppose that L(t) from �gure 1 is increasing in an accelerated
way. The height of the elevator's �oor is now given by

L(t) =
1

2
gt2 (7)

We use the letter g for the acceleration because we will discover
that the acceleration mimics a gravitational �eld � as we feel when
we take an elevator and it accelerates. We know from volume 1
of TTM on classical mechanics or from high school, that this is a
uniform acceleration. Indeed, if we di�erentiate L(t) with respect
to time, after one di�erentiation we get

L̇ = gt

which means that the velocity of the elevator increases linearly
with time. After a second di�erentiation with respect to time,
we get

L̈ = g

This means that the acceleration of the elevator is constant. The
elevator is uniformly accelerated upward. The equations connect-
ing the primed and unprimed coordinates are di�erent from equa-
tions (4). The transformation for the vertical coordinates is now

z′ = z − 1

2
gt2 (8)

The other equations in equations (4) don't change:

t′ = t

x′ = x

y′ = y

These four equations are our new coordinate transformation to
represent the relationship between coordinates that are acceler-
ated relative to each other.

We will continue to assume that in the z, or unprimed, coordinate
system, the laws of physics are exactly what Newton taught us.
In other words, the stationary reference frame is inertial, and we
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have F = mz̈. But the primed frame is no longer inertial. It is
in uniform acceleration relative to the unprimed frame. Let's ask
what the laws of physics are now in the primed frame of reference.
We have to do the operation of di�erentiating twice over again on
equation (8). We know the answer:

z̈′ = z̈ − g (9)

Ah ha! Now the primed acceleration and the unprimed accelera-
tion di�er by an amount g. To write Newton's equations in the
primed frame of reference, we multiply both sides of equation (9)
by m, the particle mass, and we replace mz̈ by F . We get

mz̈′ = F −mg (10)

We have arrived at what we wanted. Equation (10) looks like a
Newton equation, that is, mass times acceleration is equal to some
term. That term, F −mg, we call the force in the primed frame
of reference. You notice, as expected, that the force in the primed
frame of reference has an extra term: the mass of the particle
times the acceleration of the elevator, with a minus sign.

What is interesting about the ��ctitious force� −mg, in equa-
tion (10), is that it looks exactly like the force exerted on the
particle by gravity on the surface of the Earth or the surface of
any kind of large massive body. That is why we called the accel-
eration g. The letter g stood for gravity. It looks like a uniform
gravitational �eld. Let me spell out in what sense it looks like
gravity. The special feature of gravity is that gravitational forces
are proportional to mass � the same mass that appears in New-
ton's equation of motion. We sometimes say that the gravitational
mass is the same as the inertial mass. That has deep implications.
If the equation of motion is

F = ma (11)

and the force itself is proportional to mass, then the mass cancels
in equation (11). That is a characteristic of gravitational forces:
for a small object moving in a gravitational force �eld, its mo-
tion doesn't depend on its mass. An example is the motion of
the Earth about the Sun. It is independent of the mass of the
Earth. If you know where the Earth is at time t, and you know
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its velocity at that time, then you can predict its trajectory. You
don't need to know what the Earth's mass is.

Equation (10) is an example of �ctitious force � if you want to
call it that � mimicking the e�ect of gravity. Most people before
Einstein considered this largely an accident. They certainly knew
that the e�ect of acceleration mimics the e�ect of gravity, but they
didn't pay much attention to it. It was Einstein who said: look,
this is a deep principle of nature that gravitational forces cannot
be distinguished from the e�ect of an accelerated reference frame.

If you are in an elevator without windows and you feel that your
body has some weight, you cannot say whether the elevator, with
you inside, is resting on the surface of a planet or, far away from
any massive body in the universe, some impish devil is accelerat-
ing your elevator. That is the equivalence principle. It extends
the relativity principle, which said you can juggle in the same way
at rest or in a railway car in uniform motion. With a simple ex-
ample, we have equated accelerated motion and gravity. We have
begun to explain what is meant by the sentence: �gravity is in
some sense the same thing as acceleration.�

We have to discuss this result a bit, though. Do we really believe
it totally or does it have to be quali�ed? Before we do that, let's
draw some pictures of what these various coordinate transforma-
tions look like.

Curvilinear Coordinate Transformations

Let's �rst consider the case where L(t) is proportional to t. That
is when we have

z′ = z − vt

In �gure 3, every point � also called event � in space-time has a
pair of coordinates z and t in the stationary frame and also a pair
of coordinates z′ and t′ in the elevator frame. Of course, t′ = t
and we left out the two other spatial coordinates x and y, which
don't change between the stationary frame and the elevator. We
represented the time trajectories of �xed z with dotted lines and
of �xed z′ with solid lines.
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A fundamental idea to grasp is that events in space-time exist irre-
spective of their coordinates, just as points in space don't depend
on the map we use. Coordinates are just some sort of convenient
tags. We can use whichever we like. We'll stress it again after we
have looked at �gures 3 and 4.

Figure 3: Linear coordinate transformation. The coordinates (z′, t′)

are represented in the basic coordinates (z, t). An event is a point on

the page. It has one set of coordinates in the (z, t) frame and another

set in the (z′, t′) frame. Here the transformation is simple and linear.

That is called a linear coordinate transformation between the two
frames of reference. Straight lines go to straight lines, not sur-
prisingly since Newton tells us that free particles move in straight
lines in an inertial frame of reference. What is a straight line
in one frame had therefore better be a straight line in the other
frame. Not only do free particles move in straight lines in space,
when we add x and y, but their trajectories are straight lines in
space-time � straight in space and with uniform velocity.

Let's do the same thing for the accelerated coordinate system. The
transformation equation is now equation (8) linking z′ and z. The
other coordinates don't change. Again, in �gure 4, every point in
space-time has two pairs of coordinates (z, t) and (z′, t′). The
time trajectories of �xed z, represented with dotted lines, don't
change. But now the time trajectories of �xed z′ are parabolas
lying on their side. We can even represent negative times in the
past. Think of the elevator that was initially moving downward
with a negative velocity but a positive acceleration g (in other
words, slowing down). Then the elevator bounces back upward
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with the same acceleration g. Each parabola is just shifted relative
to the previous one by one unit to the right.

Figure 4: Curvilinear coordinate transformation.

What �gure 4 illustrates is, not surprisingly, that straight lines in
one frame are not straight lines in the other frame. They become
curved lines. As regards the lines of �xed t or �xed t′, they are
of course the same horizontal straight lines in both frames. We
haven't represented them.

We should view �gure 4 as just two sets of coordinates to locate
each point in space-time. One set of coordinates has straight axes,
while the second � represented in the �rst frame � is curvilinear.
Its lines z′ = constant are actually curves, while its lines t′ = con-
stant are horizontal straight lines. So it is a curvilinear coordinate
transformation.

Let's insist on the way to interpret and use �gure 4 because it is
fundamental to understand it very well if we want to understand
the theory of relativity � special relativity and even more impor-
tantly general relativity. The page represents space-time � here,
one spatial dimension and one temporal dimension.

Points (= events) in space-time are points on the page. An event
does not have two positions on the page, i.e., in space-time. It has
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only one position on the page. But this position can be located,
mapped, �charted� one also says, using several di�erent systems of
reference. A system of reference, also called a frame of reference,
is nothing more than a complete set of �labels,� if you will, attach-
ing one label (consisting of two numbers, because our space-time
here is two-dimensional) to each point, i.e., to each event.

In a two-dimensional space, the system of reference can be geo-
metrically simple, like orthogonal Cartesian axes in the plane.
However this is not a necessity. For one thing, on Earth, which is
not a plane, the axes are not straight lines. The usual axes used
by cartographers and mariners are meridians and parallels. But
on a 2D surface, be it a plane or not, we can imagine quite fancy or
intricate curvilinear lines to serve as a frame of reference � so long
as it attaches unequivocally two numbers to each (by de�nition,
�xed) point. This is what �gure 4 does in the space-time made of
one temporal and one spatial dimension represented on the page.
We will see many more in lecture 2.

Something Einstein understood very early is this:

There is a connection between gravity and curvilinear coordinate
transformations of space-time.

Special relativity was only about linear transformations � transfor-
mations that take uniform velocity to uniform velocity. Lorentz
transformations are of that nature. They take straight lines in
space-time to straight lines in space-time. However, if we want to
mock up gravitational �elds with the e�ect of acceleration, we are
really talking about transformations of coordinates of space-time
that are curvilinear. That sounds extremely trivial. When Ein-
stein said it, probably every physicist knew it and thought: �Oh
yeah, no big deal.� But Einstein was very clever and very per-
sistent. He realized that if he followed very far the consequences
of this, he could then answer questions that nobody knew how to
answer.

Let's look at a simple example of a question that Einstein an-
swered using the curved coordinates of space-time representing
acceleration, and consequently, if the two are the same, gravity.
The question is: what is the in�uence of gravity on light?
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E�ect of Gravity on Light

When Einstein �rst asked himself the question �what is the in-
�uence of gravity on light�? around 1907, most physicists would
have answered: �There is no e�ect of gravity on light. Light is
light. Gravity is gravity. A light wave moving near a massive
object moves in a straight line. It is a law of light that it moves
in straight lines. And there is no reason to think that gravity has
any e�ect on it.�

But Einstein said: �No, if this equivalence principle between accel-
eration and gravity is true, then gravity must a�ect light. Why?
Because acceleration a�ects light.� It was again one of these ar-
guments that you could explain to a clever child.

Let's imagine that, at t = 0, a �ashlight (today we might use a
laser pointer) emits a pulse of light in a horizontal direction from
the left side of the elevator; see �gure 5. The light then travels
across to the right side with the usual speed of light c. Since
the stationary frame is assumed to be an inertial frame, the light
moves in a straight line in the stationary frame.

Figure 5: Trajectory of a light beam in the stationary reference frame.

The equations for the light ray are

x = ct

z = 0
(12)

The �rst of these equations just says that the light moves across
the elevator with the speed of light � no surprise here.
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The second says that in the stationary frame the trajectory of the
light beam is horizontal.

Let's express the same equations in terms of the primed coordi-
nates. The �rst equation becomes

x′ = ct

And the second takes the more interesting form

z′ = −g

2
t2

It says that as the light ray moves across the elevator, at the same
time the light ray accelerates downward � toward the �oor � just
as if gravity were pulling it.

We can even eliminate t from the two equations and get an equa-
tion for the curved trajectory of the light ray:

z′ = − g

2c2
x′2 (13)

Thus, the trajectory, in the primed frame of reference, is a parabola,
not a straight line.

But, said Einstein, if the e�ect of acceleration is to bend the tra-
jectory of a light ray, then so must be the e�ect of gravity.

Andy: Gee Lenny, that's really simple. Is that all there is to it?

Lenny: Yup Andy, that's all there is to it. And you can bet that a
lot of physicists were kicking themselves for not thinking of it.

To summarize, in the stationary frame, the photon trajectory (�g-
ure 5) is a straight line, while in the elevator reference frame, it is
a parabola (�gure 6).

Let's imagine three people arguing. I am in the elevator, and I
say: �Gravity is pulling the light beam down.� You are in the
stationary frame, and you say: �No, it's just that the elevator is
accelerating upward; that makes it look like the light beam moves
on a curved trajectory.� And Einstein says: �They are the same
thing!�
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Figure 6: Trajectory of a light beam in the elevator reference frame.

This proved to him that a gravitational �eld must bend a light
ray. As far as I know, no other physicist understood this at the
time.

In conclusion, we have learned that it is useful to think about
curvilinear coordinate transformations in space-time.

When we do think about curvilinear coordinates transformations,
the form of Newton's laws changes. One of the things that happen
is that apparent gravitational �elds materialize, which are physi-
cally indistinguishable from ordinary gravitational �elds.

Well, are they really physically indistinguishable? For some pur-
poses yes, but not for all. So let's turn now to real gravitational
�elds, namely gravitational �elds of gravitating objects like the
Sun or the Earth.

Tidal Forces

Figure 7 represents the Earth, or the Sun, or any massive body.
The gravitational acceleration doesn't point vertically on the page.
It points toward the center of the body.

It is pretty obvious that there is no way that you could do a
coordinate transformation like we did in the preceding section
that would remove the e�ect of the gravitational �eld. Yet, if you
are in a small laboratory in space and that laboratory is allowed
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to simply fall toward Earth, or toward whatever massive object
you are considering, then you will think that in that laboratory
there is no gravitational �eld.

Figure 7: Gravitational �eld of a massive object, and small laboratory

falling toward the object, experiencing inside itself no gravitation.

Exercise 1: If we are falling freely in a uniform gravita-
tional �eld, prove that we feel no gravity and that things
�oat around us like in the International Space Station.

But, again, there is no way globally to introduce a coordinate
transformation that is going to get rid of the fact that there is
a gravitational �eld pointing toward the center. For instance, a
very simple transformation similar to equations (12) might get rid
of the gravity in a small portion on one side of the Earth, but the
same transformation will increase the gravitational �eld on the
other side. Even more complex transformations would not solve
the problem.

One way to understand why we can't get rid of gravity is to think
of an object that is not small compared to the gravitational �eld.
My favorite example is a 2000-mile man who is falling in the
Earth's gravitational �eld; see �gure 8. Because he is so big, di�er-
ent parts of his body feel di�erent gravitational �elds. Remember
that the farther away you are, the weaker is the gravitational �eld.
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His head feels a weaker gravity than his feet. His feet are being
pulled harder than his head. He feels like he is being stretched,
and that stretching sensation tells him that there is a gravitating
object nearby. The sense of discomfort that he feels, due to the
nonuniform gravitational �eld, cannot be removed by switching to
a free-falling reference frame. Indeed, no change of mathematical
description whatsoever can change this physical phenomenon.

Figure 8: A 2000-mile man falling toward Earth.

The forces he feels are called tidal forces, because they play an
important role in the phenomenon of tides, too. They cannot
be removed by a coordinate transformation. Let's also see what
happens if he is falling not vertically but sideways, staying per-
pendicular to a radius. In that case his head and his feet will be
at the same distance from Earth. Both will be subjected to the
same force in magnitude pointing to Earth. But since the force
directions are radial, they are not parallel. The force on his head
and the force on his feet will both have a component along his
body. A moment's thought will convince us that the tidal forces
will compress him, his feet and head being pushed toward each
other. This sense of compression is again not something that we
can remove by a coordinate transformation. Being stretched or
shrunk, or both, by the Earth's gravitational �eld � if you are big
enough � is an invariant fact.

In summary, it is not quite true that gravity is equivalent to going
to an accelerated reference frame.
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Andy: Aha! So Einstein was wrong after all.

Lenny: Well, Einstein was wrong at times, but no, Andy, this was
not one of those times. He just had to qualify his statement and
make it a bit more precise.

What Einstein really meant was that small objects, for a small
length of time, cannot tell the di�erence between a gravitational
�eld and an accelerated frame of reference.

It raises the following question: if I present you with a force �eld,
does there exist a coordinate transformation that will make it
vanish? For example, the force �eld inside the elevator, asso-
ciated with its uniform acceleration with respect to an inertial
reference frame, was just a vertical force �eld pointing downward
and uniform everywhere. There was a transformation canceling
it: simply use z- instead of z′-coordinates. It is a nonlinear co-
ordinate transformation. Nevertheless, it gets rid of the force �eld.

With other kinds of coordinate transformations, you can make
the gravitational �eld look more complicated, for example trans-
formations that a�ect also the x-coordinate. They can make the
gravitational �eld bend toward the x-axis. You might simultane-
ously accelerate along the z-axis while oscillating back and forth
on the x-axis. What kind of gravitational �eld do you see? A
very complicated one: it has a vertical component and it has a
time-dependent oscillating component along the x-axis.

If instead of the elevator you use a merry-go-round, that is, a
carousel, and instead of the (x′, z′, t) coordinates of the elevator,
you use polar coordinates (r, θ, t), an object that in the station-
ary frame was �xed, or had a simple motion like the light beam,
may have a weird motion in the frame moving with the merry-go-
round. You may think that you have discovered some repulsive
gravitational �eld phenomenon. But no matter what, the reverse
coordinate change will reveal that your apparently messy �eld is
only the consequence of a coordinate change. By choosing funny
coordinate transformations, you can create some pretty compli-
cated �ctitious, apparent, also called e�ective, gravitational �elds.
Nonetheless they are not genuine, in the sense that they don't re-
sult from the presence of massive objects.
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If I give you the �eld everywhere, how do you determine whether
it is �ctitious or genuine, i.e., whether it is just the sort of fake
gravitational �eld resulting from a coordinate transformation to
a frame with all kinds of accelerations with respect to a simple
inertial one, or it is a real gravitational �eld?

If we are talking about Newtonian gravity, there is an easy way.
You just calculate the tidal forces. You determine whether that
gravitational �eld will have an e�ect on an object that will cause
it to squeeze and stretch. If calculations are not practical, you
take an object, a mass, a crystal. You let it fall freely and see
whether there were stresses and strains on it. If the crystal is big
enough, these will be detectable phenomena. If such stresses and
strains are detected, then it is a real gravitational �eld as opposed
to only a �ctitious one.

On the other hand, if you discover that the gravitational �eld
has no such e�ect, that any object, wherever it is located and let
freely to move, experiences no tidal force � in other words, that
the �eld has no tendency to distort a free-falling system � then
it is a �eld that can be eliminated by a coordinate transformation.

Einstein asked himself the question: what kind of mathematics
goes into trying to answer the question of whether a �eld is a
genuine gravitational one or not?

Non-Euclidean Geometry

After his work on special relativity, and after learning of the math-
ematical structure in which Minkowski7 had recast it, Einstein
knew that special relativity had a geometry associated with it. So
let's take a brief rest from gravity to remind ourselves of this im-
portant idea in special relativity. Special relativity was the main
subject of the third volume of TTM. Here, however, the only thing
we are going to use about special relativity is that space-time has
a geometry.

7Hermann Minkowski (1864�1909), Polish-German mathematician and
theoretical physicist.
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In the Minkowski geometry of special relativity, there exists a
kind of distance between two points, that is, between two events
in space-time; see �gure 9.

Figure 9: Minkowski geometry: a 4-vector going from P to Q.

The distance between P and Q is not the usual Euclidean distance
that we could be tempted to think of. It is de�ned as follows. Let's
call ∆X the 4-vector going from P to Q. To the pair of points P
and Q we assign a quantity denoted ∆τ , de�ned by

∆τ2 = ∆t2 −∆x2 −∆y2 −∆z2

Notice that ∆τ does not satisfy the usual properties of a distance.
In particular, ∆τ2 can be positive or negative; and it can be zero
for two events that are not identical. The reader is referred to
volume 3 of TTM for details. Here we only give a brief refresher.

The quantity ∆τ is called the proper time between P and Q. It is
an invariant under Lorentz transformations. That is why it qual-
i�es as a sort of distance, just as in three-dimensional (3D) Eu-
clidean space the distance between two points, ∆x2 +∆y2 +∆z2,
is invariant under isometries.

We also de�ne a quantity ∆s by

∆s2 = −∆t2 +∆x2 +∆y2 +∆z2

We call ∆s the proper distance between P and Q. Of course, ∆τ
and ∆s are not two di�erent concepts. They are the same � just
di�ering by an imaginary factor i. They are just two ways to talk
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about the Minkowski �distance� between P and Q. Depending on
which physicist is writing the equations, they will rather use ∆τ
or ∆s as the distance between P and Q.

Einstein knew about this non-Euclidean geometry of special rela-
tivity. In his work to include gravity, and to investigate the con-
sequences of the equivalence principle, he also realized that the
question we asked at the end of the previous section � are there
coordinate transformations that can remove the e�ect of forces? �
was very similar to a certain mathematics problem that had been
studied at great length by Riemann. It is the question of deciding
whether a geometry is �at or not.

Riemannian Geometry

What is a �at geometry? Intuitively, it is the following idea: the
geometry of a page is �at. The geometry of the surface of a sphere
or a section of a sphere is not �at. The intrinsic geometry of the
page remains �at even if we furl the page like in �gure 10. We
will expound mathematically on the idea in a moment.

Figure 10: The intrinsic geometry of a page remains �at.

For now, let's just say that the intrinsic geometry of a surface is
the geometry that a two-dimensional bug roaming on it, equipped
with tiny surveying tools, would see if it were trying to establish
an ordnance survey map of the surface.

If the bug worked carefully, it might see hills and valleys, bumps
and troughs, if there were any, but it would not notice that the
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page is furled. We see it because for us the page is embedded in
the 3D Euclidean space we live in. By unfurling the page, we can
make its �atness obvious again.

Einstein realized that there was a great deal of similarity in the two
questions of whether a geometry is non-�at and whether a space-
time has a real gravitational �eld in it. Riemann had studied the
�rst question. But Riemann had never dreamt about geometries
that have a minus sign in the de�nition of the square of the dis-
tance. He was thinking about geometries that were non-Euclidean
but were similar to Euclidean geometry � not Minkowski geometry.

Let's start with the mathematics of Riemannian geometry, that
is, of spaces where the distance between two points may not be
the Euclidean distance, but in which the square of the distance is
always positive.8

Figure 11: Small displacement between two points in a space.

We look at two points in a space; see �gure 11. In our example
there are three dimensions, therefore three axes, X1, X2, and X3.
There could be more. Thus a point has three coordinates, which
we can write as Xm, where m is understood to run from 1 to 3
or to whatever number of axes there is. And a little shift between
one point and another nearby has three components, which can
be denoted ∆Xm or, if it is to become an in�nitesimal, dXm.

8In mathematics, they are called positive de�nite distances.
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If this space has the usual Euclidean geometry, the square of the
length of dXm is given by Pythagoras theorem

dS2 = (dX1)2 + (dX2)2 + (dX3)2 + . . . (14)

If we are in three dimensions, then there are three terms in the
sum. If we are in two dimensions, there are two terms. If the space
is 26-dimensional, there are 26 of them and so forth. That is the
formula for Euclidean distance between two points in Euclidean
space.

For simplicity and ease of visualization, let's focus on a two-
dimensional space. It can be the ordinary plane, or it can be
a two-dimensional surface that we may visualize embedded in 3D
Euclidean space, as in �gure 12.

Figure 12: Two-dimensional manifold (i.e., 2D surface) and its curvi-

linear coordinates viewed embedded in ordinary 3D euclidean space.

There is nothing special about two dimensions for such a surface,
except that it is easy to visualize. Mathematicians think of �sur-
faces� even when they have more dimensions. Usually they don't
call them surfaces but manifolds or sometimes varieties.

Gauss had already understood that on curved surfaces the formula
for the distance between two points was more complicated in gen-
eral than equation (14). Indeed, we must not be confused by the
fact that in �gure 12 the surface is shown embedded in the usual
three-dimensional Euclidean space. This is just for convenience
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of representation. We should think of the surface as a space in
itself, equipped with a coordinate system to locate any point, with
curvy lines corresponding to one coordinate being constant, etc.,
and where a distance has been de�ned. We must forget about the
embedding 3D Euclidean space. The distance between two points
on the surface is certainly not their distance in the embedding 3D
Euclidean space, and is not even necessarily de�ned on the sur-
face with the equivalent of equation (14). We will come shortly
to exactly how these distances are represented mathematically.

Riemann generalized these surfaces and their metric (the way to
compute distances) to any dimensions. But let's continue to use
our picture with two dimensions in order to sustain intuition. And
let's go slowly, so as not to miss any important detail.

The �rst thing we do with a surface is put some coordinates on
it, which will allow us to quantify various statements involving
its points. We just lay out coordinates as if drawing them with a
piece of chalk. We don't worry at all about whether the coordinate
axes are straight lines or not, because for all we know when the
surface is a really curved surface, there probably won't even be
things that we can call straight lines. We still call them X's.

Figure 13: Two neighboring points and the shift dXm between them.

The values of the X's are not related directly to distances. They
are just numerical labels. The points (X1 = 0, X2 = 0) and
(X1 = 1, X2 = 0) are not necessarily separated by a distance
of one. Now we take two neighboring points; see �gure 13. The
two neighboring points are again related by a shift of coordinates.
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But, unlike in �gure 11, which was still a Euclidean space, now
we are on an arbitrary curved surface with arbitrary coordinates.

Now we de�ne a distance on the surface for points separated by
a small shift like dXm. It won't be as simple as equation (14),
though it will have similarities with it. Here is the new de�nition
of dS2:

dS2 =
∑
m, n

gmn(X) dXmdXn (15)

The functions gmn(X)'s, considered altogether, form what is called
the metric of the space. It is a set of functions of the position X
on the manifold under consideration.

Formula (15) is very general and applies whether the manifold is
�at or curved. It is a very important formula in Riemannian ge-
ometry, and � we will soon see � even in the Minkowski geometry
of relativity.

We will also see in a moment how the Einstein summation con-
vention will enable us to rewrite formula (15) in a lighter form.
The convention is explained in the section �Mathematical Inter-
lude: Einstein Summation Convention,� see infra.

Incidentally, formula (15) applies even to �at geometries equipped
with curvilinear coordinates. Suppose that you take a �at geome-
try, like the surface of the page, but for some reason you use some
curvilinear coordinates to locate points, and you ask what is the
distance between two points close to each other. Then in gen-
eral, the square of the distance between two points close to each
other will be a quadratic form in the coordinate shifts dXm's. A
quadratic form means a sum of terms, each of which is the prod-
uct of two little coordinate shifts, times a coe�cient like gmn that
depends on X.

The surface of the Earth o�ers a simple example of distance on a
curved manifold. Look at the distance between two nearby points
characterized by longitude and latitude, as shown in �gure 14.
Let's denote with R the Earth radius. We take two points (ϕ, θ)
and (ϕ+ dϕ, θ+ dθ), where θ is the latitude and ϕ the longitude.
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Figure 14: Formula for distance on the Earth surface. Shown are the

points (ϕ, θ) and (ϕ+ dϕ, θ + dθ), and the segment joining them.

Apply Pythagoras theorem in a small, approximately �at, rectan-
gular region to compute the square of the length of its diagonal.
One pair of sides along a meridian have length Rdθ. The other
pair of sides along a parallel have length Rdϕ but corrected by the
cosine of the latitude. At the equator it is the full Rdϕ, whereas
at the pole it is zero.

The general formula for the square of the distance is

dS2 = R2
[
dθ2 + (cos θ)2dϕ2

]
(16)

It is an example of squared distance not just equal to dθ2 + dϕ2

but having some coe�cient functions in front of the di�erentials.
In this case the interesting coe�cient function is (cos θ)2 in front
of one of the terms (dXm)2. Note that the coe�cient (cos θ)2 is
often written cos2 θ. Note also that in this case there are no terms
of the form dθ dϕ because the natural curvilinear coordinates we
chose on the sphere are still orthogonal at every point.9

In other examples � on the sphere with more involved coordi-
nates, or on a more general curved surface like in �gure 13 � where
the coordinates are not necessarily locally perpendicular, the for-
mula for dS2 would be more complicated and comprise terms in
dXmdXn. But it will still be a quadratic form. There will never
be dθ3 terms. There will never be things linear. Every term will

9Note that spherical coordinates like we use here, which are a bit more
sophisticated than Cartesian coordinates, were already much used in the six-
teenth century, while Cartesian coordinates began to be used in analytic ge-
ometry only in the seventeenth century.
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always be quadratic. Moreover in Riemannian geometry, at every
point X, the quadratic form de�ning the metric locally is always
positive de�nite.

You may wonder why we de�ne the distance dS only for small
(actually in�nitesimal) displacements. The reason is that to talk
about distance between two points A and B far away from each
other, we must �rst of all de�ne what we mean. There may be
bumps and troughs in between. We could mean the shortest dis-
tance as follows: we put a peg at A and a peg at B and pull a
string as tight as we can between the two points. That would
de�ne one notion of distance. Of course, there might be several
paths with the same value. One might go around the hill this way.
Then the other would go around the hill that way. Simply think
on Earth of going from the North Pole to the South Pole.

Furthermore, even if there is only one answer, we have to know
the geometry on the surface everywhere in the whole region where
A and B are located, not only to calculate the distance but to
know actually where to place the string. Therefore the notion
of distance between any two points is more complicated than in
Euclidean geometry. But between two neighboring points it is not
so complicated. That is because locally a smooth surface can be
approximated by the tangent plane and the curvilinear coordinate
lines by straight lines � not necessarily perpendicular but straight.

Metric Tensor

Let's go deeper into the geometry of a curved surface and its
links with equation (15), which de�nes the distance between two
neighboring points on it. Recall the equation

dS2 =
∑
m, n

gmn(X) dXmdXn

In order to get a feel about the geometry of the surface and its
behavior, let's imagine that we arrange elements from a Tinkertoy
Construction Set along the curved surface. For instance, they
could approximately follow the coordinate lines on the surface.
We would also add more rigid elements diagonally. This would
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create a lattice as shown in �gure 15. But any reasonably dense
lattice, sort of triangulating the surface, would do as well. Suppose
furthermore that the Tinkertoy elements are hinged together in a
way that lets them freely move in any direction from each other.

Figure 15: Lattice of rigid Tinkertoy elements arranged on the surface.

Imagine that we lift our lattice from the surface. Sometimes it
will keep its shape rigidly, sometimes it won't. It will not keep
its shape if it is possible to go from the initial shape to a new
shape without forcing any Tinkertoy element to be stretched or
compressed or bent.

In some cases it will even be possible to lay it out �at. It is the
case, for instance, in �gure 10 going from the shape on the right
to the shape on the left � which is just a �at page.

Exercise 2: Is it possible to �nd a curved surface and a
lattice of rods arranged on it that cannot be �attened out,
but can change shape?

Answer: Yes. According to Gauss's Theorema Egregium, which
we invite the reader to look up, a surface can be modi�ed without
stretching or compressing it as long as we preserve everywhere its
Gaussian curvature. For instance, it is possible to change in such
a way a section of a hyperbolic paraboloid.

We shall see that the initial surface being able to take other shapes
or not corresponds to the gmn's of equation (15) having certain
mathematical properties.



1. Equivalence Principle and Tensor Analysis 31

The collection of gmn's has a name. It is called the metric tensor.
It is the mathematical object that enables us to compute the dis-
tance between two neighboring points on our Riemannian surface.

Mind you, the gmn's are functions of X (the points of the mani-
fold). So, strictly speaking, we are talking about a tensor �eld.
But it is customary to talk casually of the metric tensor, keeping
in mind that the collection of its components depends on X.

When the lattice of Tinkertoy elements can be laid out �at, the
geometry of the surface is said to be intrinsically �at, or just �at.
We will de�ne it more rigorously later.

Sometimes, on the other hand, the lattice of little rods cannot be
laid out �at. For example on the sphere, if we initially lay out a
lattice triangulating a large chunk of the sphere, we won't be able
to lay it out on a �at plane.10

The question we have to address is this: if I made a lattice of
little rods covering a surface, and I gave you the length of each
rod, without yourself building the lattice how could you tell me
whether it is a �at space or an intrinsically curved space, which
cannot be �attened and laid out on a �at plane?

Let's formulate the problem more precisely and mathematically.
We start from the metric tensor gmn(X), which is a function of
position, in some set of coordinates. Keep in mind that there are
many di�erent possible sets of curvilinear coordinates on the sur-
face, and in every set of coordinates the metric tensor will look
di�erent. It will have di�erent components, just like the same 3-
vector in ordinary 3D Euclidean space has di�erent components
depending on the basis used to represent it, but in addition the
components will vary with position in di�erent ways.

I select one set of coordinates and I give you the metric tensor of
my surface. In e�ect I tell you the distance between every pair of
neighboring points. The question is: is my surface �at or not?

10This is a well-known problem of cartographers, which led to the invention
of various kinds of maps of the world, the most famous being the Mercator
projection map invented by Flemish cartographer Gerardus Mercator (1512�
1594).
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To answer that question, you may think of �checking Pi.� Here
is the way it would go. Think of a 2D surface embedded in the
usual 3D Euclidean space as shown in �gure 12. You select a point
and mark out a disk around it. Then you measure its radius r
as well as its circumference l, and you divide l by 2r. If you get
3.14159. . . you would say that the surface is �at. Otherwise you
would say that it is not �at, it is intrinsically curved. Notice that
this procedure is good for a two-dimensional surface, under cer-
tain conditions. Anyway it is not so great for higher-dimensional
surfaces.

What is the mathematics of taking a metric tensor and asking if
its space is �at? What does it mean for it to be �at? By de�ni-
tion, it means this:

The space is �at if we can �nd a coordinate transformation, that
is, a di�erent set of coordinates, in which, at any point on the sur-
face, the distance formula for dS2 becomes just (dX1)2+(dX2)2+
. . .+ (dXn)2, as it would be in Euclidean geometry.

It is not necessary that the initial gmn(X)'s form everywhere the
unit matrix, with ones on the diagonal and zeroes elsewhere � as
if equation (15) were just Pythagoras theorem. But we must �nd
a coordinate transformation that brings it to that form.

In that sense, it has a vague similarity with the question of whether
you can �nd a coordinate transformation that removes the grav-
itational �eld. In fact, it turns out not to be a vague similarity
at all but a close parallel. The question is: can we �nd a co-
ordinate transformation that removes the curvy character of the
metric tensor gmn?

To answer that geometric question, we have to do some math-
ematics essential to relativity. It is not possible to understand
general relativity without it. The mathematics is tensor analysis
plus some di�erential geometry. At �rst it looks annoying because
we have to deal with all these indices �oating around, and di�er-
ent coordinate systems, and partial derivatives of components, etc.
But once we get used to it, we will see that it is simple. It was in-
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vented, as said, by Ricci-Curbastro and Levi-Civita at the end of
the nineteenth century to build on works of Gauss and Riemann.
It was further simpli�ed by Einstein, who set rules for the position
of indices and astutely got rid of most summation symbols.

Before explaining what is the Einstein summation convention elim-
inating most summation symbols, let's spend a few moments ex-
plaining the simple concept of dummy variable.

Mathematical Interlude: Dummy Variables

We are accustomed to equations where all the variables have a
substantial mathematical or physical meaning. A physical exam-
ple is equation (7), reproduced here:

L(t) =
1

2
gt2

This famous equation was found by Galileo Galilei in the �rst half
of the seventeeth century,11 before the invention of calculus. In
fact, it is one of the equations that triggered the invention of cal-
culus by Newton and Leibniz. It describes the fall of an object: L
stands for the distance of fall as a function of time, g stands for
the acceleration on the surface of the Earth, and t stands for time.

Another even simpler and purely mathematical example is

A = ab

where a is the length of a rectangle, b is its width, and A is its area.

But we are also familiar with equations where one of the vari-
ables is only a handy mathematical notation without a substantial
meaning. A simple example is the well-known identity expressing
the value of the sum of all the squares of the integers from 1 to m

m(m+ 1)(2m+ 1)

6
=

n=m∑
n=1

n2

11We give it here in its modern form. Galileo (1564�1642) just wrote that
the distance of the fall was proportional to the square of the fall duration,
which, if you think of it, is a mind-blowing discovery.



34 General Relativity

Here the variable m has a substantial meaning: it is the number
up to which we sum. But the variable n on the right-hand side
does not have such a substantial meaning. We could rewrite the
equation as

m(m+ 1)(2m+ 1)

6
=

k=m∑
k=1

k2

It would be exactly the same equation.

The variable n, or the variable k, is called a dummy variable. It
is only used to conveniently express the sum.

We will meet many formulas containing one or several dummy
variables, usually expressing sums, in general relativity. They are
so frequent that Einstein came up with a rule to simplify them.
His rule, or convention, turned out to be not only a great sim-
pli�cation, but also a very useful notational device to write gen-
eral relativity equations, providing a guide rail as well as having
a meaning on its own. The convention is the topic of the next
mathematical interlude. Later in this lecture and in the rest of
the book, we will discover its remarkable usefulness.

Mathematical Interlude:

Einstein Summation Convention

As we go along, we will see that certain patterns keep recurring
in the equations. One such pattern involves expressions in which
an index such as µ is repeated in a single expression. Here is an
example. For the moment it doesn't matter what it means; it's
just a pattern that we will see over and over.∑

µ

V µUµ

There are a few things to note. First of all, there is a summation
over µ, which means that µ is a dummy index. It is just another
name, in the speci�c context of vectors and tensors, for a dummy
variable. As a consequence, what letter we use doesn't matter.
The expressions with µ, as above, or with ν, as below, represent
exactly the same thing, whence, as we saw, the term dummy.∑

ν

V νUν
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Secondly, the dummy index appears twice in the same expression
� not once, not three times, twice.

Finally, the repeated index occurs once as a superscript and once
as a subscript. I often say that it appears once upstairs and once
downstairs. That's the pattern: a sum over an index that appears
once upstairs and once downstairs.

Einstein's famous trick � the so-called Einstein summation con-
vention � was just to leave out the summation sign. The rule is:
whenever we see something like V µUµ, we automatically sum over
the index µ.

We can readily apply the convention to formula (15) that we met
earlier expressing the general form of the metric in a Riemannian
space (or for that matter in a Minkowskian space as well, we shall
see). It was

dS2 =
∑
m, n

gmn(X) dXmdXn

With the Einstein summation convention it becomes

dS2 = gmn(X) dXmdXn

Simpler! Isn't it?

Usually, not forgetting that the gmn's components depend on X,
i.e., remembering that the metric tensor is actually a tensor �eld,
we simplify it even further to

dS2 = gmn dXmdXn

Andy: Did it really take Einstein to invent the summation con-
vention?

Lenny: I guess it did. When I was a student, I read Einstein's
famous 1916 paper �The Foundation of the General Theory of Rel-
ativity.� It was my habit when I learned new physics to write out
the equations as I read them. At the start of the paper, the equa-
tions were written as anyone else would write them. Here's his
equation 2:

dXν =
∑
σ

aνσdxσ
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But then all of a sudden, right after equation 7, Einstein casually
remarks that there is always a summation when indices appear
twice.12 So from now on, he said, we'll just keep that in mind and
stop writing the summation sign. It's pretty clear that he just got
tired of writing them. I was pretty tired of writing them too. What
a relief it was.

End of interlude on Einstein summation convention.

Let's return to the metric and its various forms in several di�er-
ent coordinate systems. To �nd a set of coordinates that make
equation (15) become equation (14) is a more involved procedure
than just diagonalizing the matrix gmn. The reason is that there
is not one matrix. As we stressed, each component gmn depends
on X.

It is the same tensor �eld, but it has a di�erent matrix at each
point.13 You cannot diagonalize them all at the same time. At a
given point, you can indeed diagonalize gmn(X) even if the sur-
face is not �at. It is equivalent to working locally in the tangent
plane of the surface at X, and orthogonalizing the coordinate axes
there. But you cannot say that a surface is �at because it can be
made at any given point locally to look like the Euclidean plane.

Let's examine equation (14) more closely. It can be written in
terms of a special matrix whose components are the Kronecker-
delta symbol δmn, de�ned in the following way.14

First of all, δmn is zero unless m = n. For example, in three di-
mensions δ12, δ13, and δ23 are all zero, but δ11, δ22, and δ33 are
nonzero. In other words, at each point the Kronecker-delta sym-
bol is a diagonal matrix.

12Later, Einstein devised the superscript and subscript notations for the
indices of tensors, and his rule henceforth applied only to pairs of indices,
with the same dummy variable, one upstairs and the other downstairs.

13For a given set of coordinates, we have a collection of matrices � one at
each point. For another set of coordinates, we will have another collection
of matrices. At each point, the components of the tensor depend on the
coordinates, but the tensor itself is an abstract object that doesn't. We
already met the distinction with 3D vectors.

14Named after the German mathematician Leopold Kronecker
(1823�1891).
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Secondly, the diagonal elements are all equal to 1:

δ11 = δ22 = δ33 = 1

Armed with the Kronecker-delta and the Einstein summation con-
vention, we can rewrite equation (14) in the compact form,

dS2 = δmn dXmdXn (17)

To determine if a space is �at, we look for a coordinate transfor-
mation, X → Y , that turns gmn into δmn everywhere. Remember
that X and Y represent the same point P . This point P is simply
located with two di�erent reference systems, which, as we stressed,
are nothing more than some geometric labeling procedure.

Later, the points P will be events in space-time, and the Kronecker-
delta will be replaced by a slightly more involved diagonal matrix
in Minkowski geometry (also called Minkowskian or Einsteinian
geometry), but many of the ideas will remain unchanged. However
let's not go too fast, and for the moment let's stay in Riemannian
geometry. Riemannian geometry is everywhere locally Euclidean.
It can be thought of as �Euclidean geometry on a piece of rubber.�

For most metrics it is not possible to �nd a coordinate transfor-
mation that transforms everywhere the gmn into δmn. It is only
when the space is intrinsically �at that we can.

In summary, I give you the metric tensor of my surface, that is,
the gmn of equation (15), which we now write

dS2 = gmn(X) dXmdXn

The question I ask you is: can you, by a coordinate transformation
X → Y , reduce it to equation (17)? That is, in the Y system,

dS2 = δmn dY mdY n

There is no need to write δmn(Y ), since the Kronecker-delta sym-
bol by de�nition has a unique form. However, for the sake of
clarity, we will sometimes still write δmn(Y ) because it reminds
us of which system of coordinates we are using.
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If the answer is yes, the space is called �at. If it is no, the space
is called curved. Of course, the space could have some portions
that are �at. There could exist a set of coordinates such that in
a region the metric tensor is the Kronecker-delta. But the surface
is called �at only if it is everywhere �at.

This becomes a pure mathematics problem: given a tensor �eld
gmn(X) on a multidimensional space (which mathematicians call
a manifold), how do we �gure out if there is a coordinate trans-
formation that would change it into the Kronecker-delta symbol?

To answer that question, we have to understand better how things
transform when we make coordinate transformations. That is the
subject of tensor analysis. We begin to present the subject in the
rest of this lecture, and will treat it in more depth in lecture 2.

The analogy between tidal forces and curvature actually is not an
analogy, it is a very precise equivalence. In the general theory of
relativity, the way you diagnose tidal forces (or said more accu-
rately, their generalization) is by calculating the curvature tensor.
A �at space is de�ned as a space where the curvature tensor is
zero everywhere. Therefore it is a very precise correspondence.
Simply stated:

Gravity is curvature.

But we will come to this conclusion as we get through tensor
analysis. Obviously, in trying to determine whether we can trans-
form away gmn(X) and turn it into the trivial δmn(Y ), the �rst
question to ask is: how does gmn(X) transform when we change
coordinates? We have to introduce notions of tensor analysis that
are rather easy.

We shall express the �rst tensor rule, then present a mathematical
interlude spelling out some general facts on vectors and tensors,
then present the second tensor rule.

We will conclude this copious lecture again with some general con-
siderations on covariant and contravariant components of vectors
and tensors.
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First Tensor Rule: Contravariant Components of

Vectors

Sometimes tensor notations are a bit of a nuisance because of all
the indices. At �rst we can get confused by them. But soon we
will discover that the manipulations obey strict rules and turn out
to be rather simple.

We shall begin with a simpler thing than gmn(X). Suppose that
there are two sets of coordinates on our surface: a set of coor-
dinates Xm, and a second set that we could call X ′ as we did
earlier. But then we would be running into horrible notations
with cluttered expressions like X ′1. So we denote the second set
of coordinates Y m. To be very explicit, if we are on a space of
dimension N , the same point P has coordinates[

X1(P ), X2(P ), . . . , XN (P )
]

and also has coordinates[
Y 1(P ), Y 2(P ), . . . , Y N (P )

]
The X's and Y 's are related because if you know the coordinates
of a point P in one set of coordinates, then in principle you know
where the point is. Therefore you also know its coordinates in the
other coordinate system. Thus each coordinate Xm is a function
of all the coordinates Y n. We can use whatever dummy index we
want if that helps avoid confusion. We will simply write

Xm(Y )

Likewise each Y m is assumed to be a known function of all the
Xn's:

Y m(X)

In short, we have two coordinate systems, each one a function of
the other. The correspondence is one-to-one since these are coor-
dinate systems. And we assume that the functions are nice and
smooth.

Now we ask: how do the di�erential elements dXm transform?
The collection of di�erential elements dXm is a small vector, as
shown in �gure 16. Remember that the vector itself is a pair of
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points (an origin and an end). It is independent of the coordinate
system. But in order to work with it, it is useful to express it
using its components dXm.

Figure 16: Small displacement expressed in the X coordinate system.

The notation dXm is used to represent the small vector

dXm =
[
dX1, dX2, . . . , dXN

]
Said another way, when we change X a little bit, the point P
moves to a nearby point Q, and the displacement is dXm.

Let's look at the same displacement, expressed in the Y coordinate
system. We want to know how dY m can be expressed in terms of
the dXp's. It is an elementary result of calculus that

dY m =
∑
p

∂Y m

∂Xp
dXp

or using the summation convention,

dY m =
∂Y m

∂Xp
dXp (18)

Let's spell out even more explicitly what equation (18) says: the
total change of some particular component Y m is the sum of the
rate of change of Y m when you change only X1, times the little
change in X1, namely dX1, plus the rate of change of Y m when
you change only X2, times the little change in X2, namely dX2,
and so forth up to XN and dXN because equation (18) means a
sum over the dummy index p going from 1 to N .

We now turn to some general considerations on vectors and tensors.

So far we have used several times the term tensor (tensor calculus,
metric tensor, curvature tensor, �rst tensor rule, etc.), without ex-
plaining what is a tensor! As the reader has understood, it is a
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fundamental mathematical tool in general relativity. You may
even remember that �it extends the concept of vector.� But that
is certainly not a su�cient explanation to grasp what it is.

We won't go into a full �edged exposition of linear algebra and
tensors � which the reader may �nd in any good manual on the
subject. However, as I have done several times in The Theoretical
Minimum series, for instance, when I dared to explain in volume 1
integral calculus or partial di�erentiation in brief interludes of a
few pages, because we needed those tools for classical mechanics, it
is time in this lecture for a third mathematical interlude presenting
in some detail vectors and tensors.

Mathematical Interlude:

Vectors and Tensors

Let's begin with the simplest notion of a tensor, namely a scalar.
A scalar S(X) is a function of position with the property that it
has the same value in every coordinate system. For that reason,
we could also denote it S(P ), but we want to insist on the coor-
dinate system we chose to use, so we write instead S(X). For the
same scalar in the Y coordinate system, we will temporarily use
the notation S′(Y ). (Later we will use S(Y ) and S(X) for both,
because it is clearer when we talk about the chain rule.)

Its transformation properties are trivial: it doesn't transform at
all. An example drawn from meteorology would be the tempera-
ture at a point in space. The transformation property of a scalar
re�ects this triviality,

S′(Y ) = S(X)

In the case of temperature, this says that the temperature at a
point is just a number.15 It does not depend on the orientation

15Number and scalar are two equivalent terms for the same thing. What
is the reason for talking about �scalars�? Numbers are often called scalars
because one number can always be obtained from another number with a
change of scale: for instance, you can obtain 7 from 2, just by multiplying
2 by 3.5. You cannot do that with any pair of vectors. It is possible only
with colinear vectors. Strictly speaking, the term scalar is reserved for real
numbers. But we often also casually call complex numbers scalars.
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of the coordinate system at that point. Note too that scalars do
not have components, or perhaps more accurately, they have only
one component: the value of the scalar itself.

Let's turn to the next simple kind of tensors, namely vectors. We
shall see that there are two kinds.

We all have an intuitive idea of what a vector in a Riemannian
geometry is. It is a little arrow, usually attached to a point in
space. It points in a direction and it has a magnitude. An exam-
ple, again from meteorology, would be the wind velocity.

In a Riemannian geometry, a vector is a thing unto itself, but
given a coordinate system and a metric, it can be described by
components in one of two ways: either contravariant or covariant
components.

Since the terms can be a little confusing, let's stress right away
that what are called the contravariant components of a vector are
the good old components with which we construct the vector as a
linear combination of the basis vectors.

We will see that we can also attach to a vector another set of num-
bers, called its covariant components. They are not its ordinary
contravariant components, but something else, the geometrical
meaning of which will be explained in lecture 2. The contravari-
ant and covariant components of a vector will be simply related
to each other with the help of the metric.

These components, like the components of the metric itself, will
vary when the coordinates system changes. For the moment, how-
ever, let's not think of a metric, only of a system of coordinates X
and a system of coordinates Y . We position ourselves at a point
P . At this point, we consider a set of numbers attached to it and
that depends on the coordinate system.

Disregarding any geometric interpretation, this set of numbers
can be viewed as an abstract �vector.� As said, we are in the case
where the vector will change with the coordinate system.
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In that case we will have two kinds of vectors: covariant or con-
travariant vectors. Notice I said covariant or contravariant vectors
� not covariant or contravariant components. Later, when we have
introduced a metric, we can put the two together to describe a sin-
gle kind of vector (the intuitive arrow) in two ways.

What is it that makes a collection of numbers like dXm a con-
travariant vector, rather than just a collection of numbers? The
answer is the transformation properties under a coordinate trans-
formation. Equation (18) de�nes the paradigm for the transfor-
mation of a contravariant vector.

A contravariant vector is a set of numbers V m that transform as
follows:

(V ′)m =
∂Y m

∂Xp
V p (19)

In this equation the variables V are the components of the vector
in the X coordinate system and (V ′) are the components in the
Y system. Looking back at equation (18), we see that the di�er-
ential displacement dXm is a contravariant vector.

There are a couple of things to note. First of all, I have used
the summation convention so that the index p is summed over.
Secondly, the index p in the expression ∂Y m/∂Xp is a downstairs
index. That's a convention that we have already mentioned in the
interlude on Einstein summation convention and that the reader
will have to remember: when an upstairs index occurs in the de-
nominator of an expression, it counts as a downstairs index.

Generally speaking, in a �level� expression (i.e., with no denom-
inator) or in the numerator of a fraction, a superscript index is
called a contravariant index. And a subscript index is a called
a covariant index. But, as we said, according to the summation
convention, a superscript in the denominator of a fraction acts
like a covariant index.

Let's move on to the second kind of vector � a covariant vector.
If the iconic contravariant vector is the displacement dXm, the
iconic covariant vector is the gradient of a scalar S(X).
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Its components are given by the derivatives of the scalar along the
coordinate axes:

∂S(X)

∂Xp
(20)

Clearly these components depend on the choice of coordinates,
and will transform when the coordinates are transformed. For
example, suppose we transform from the X to the Y system. To
compute the components of the gradient in the Y system, we use
a version of the chain rule of calculus (see lecture 2 of volume 1
of TTM, in which the chain rule is explained). We get

∂S

∂Y m
=

∂S

∂Xp

∂Xp

∂Y m
(21)

From this we can abstract the general rule for the transformation
of a covariant vector:

(W ′)m = Wp
∂Xp

∂Ym
(22)

Thus, in equation (18), we met the �rst example of transforma-
tion of a tensor, because an ordinary vector, corresponding for
instance to the position of a point, or to a displacement (in other
words, a translation), or to a velocity, etc., is a contravariant vec-
tor, which is a simple kind of tensor.

Indeed, we now have the expressions, in two di�erent coordi-
nate systems, of the small displacement of a point on the surface
(�gure 16). They are dXm and dY m. Let's repeat that the dXm

and dY m are two sets of components for the same displacement.
And we know how to go from one set to the other.

Figure 17, which completes �gure 16, shows the small displace-
ment, and also locally the two sets of coordinates.

By now the reader has understood that equation (18) is simply the
transformation property of the components of the displacement
vector when this displacement vector (which is itself a well-de�ned
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geometric object, being de�ned independently of any coordinate
system16) is expressed in the X system and in the Y system.

Figure 17: Small displacement, and two sets of coordinates. The small

vector has components (dX1, dX2) shown, but also (dY 1, dY 2) not

shown.

Note on terminology: because we will deal with vectors that can
have contravariant expressions but also covariant expressions, we
will prefer to speak of the contravariant components of a vector
or the covariant components of a vector.

In short, the term contravariant comes from the fact that if we
change the unit vectors in the coordinate system, for instance if
we simply divide the length of each of them by ten, the compo-
nents of a vector representing a translation will be multiplied by
ten. Turning to the other term, covariant comes from the fact
that, in the same kind of change of coordinates, the components
of a gradient will be divided by ten.

16Notice, however, that it is di�cult to speak of geometric concepts with-
out some kind of coordinate system. The two famous American geometers
Oswald Veblen (1880�1960) and John Whitehead (1904�1960), aware of the
di�culty to de�ne what is geometry, wrote in their book The Foundations

of Di�erential Geometry that geometry is what experts call geometry. :-)
This statement was considered outrageous by the Russian mathematician
Andreï Kolmogorov (1903�1987) and his coauthors Alexander Alexandrov
(1912�1999) and Mikhaïl Lavrentiev (1900�1980) in their famous book on
mathematics, the English translation of which is Mathematics: Its Content,

Methods and Meaning, MIT Press, 1969.
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The interlude presented the simplest kind of tensors: tensors of
rank 0, which are simply scalars; and tensors of rank 1, which
are contravariant vectors and covariant vectors. The next kinds
of tensors, of rank 2 or more, will be presented in the last section
of this lecture.

Second Tensor Rule: Covariant Components of Vectors

Although we have already mentioned it cursorily in the preced-
ing mathematical interlude, for the sake of symmetry, let's spell
out the second tensor rule concerning the covariant components
of vectors. These vectors are used to represent other things than
position or translation or velocity or acceleration, etc. The reader
may primarily think of gradients of scalar �elds.

Examples of scalar �elds are the temperature, the atmospheric
pressure, the Higgs �eld, whatever has, at any point in the space,
a value that is not multidimensional but simply a number, and
that doesn't change if we change coordinates.

The wind velocity is not a scalar �eld because at every point it
has a vector value. It is a vector �eld. It is important to note the
following point, which should clarify things:

If we tried to consider only the �rst component of the vector repre-
senting the wind, we would not get a scalar �eld, because it would
not be invariant under change of coordinates.

Thus the gradient of a scalar function is a vector (in the sense
of a collection of components). But it is not an ordinary vector.
Indeed, its components don't transform in the same way as do the
contravariant components of ordinary vectors.

We saw earlier that an application of the chain rule gave us equa-
tion (21), which we reproduce here:

∂S

∂Y m
=

∂S

∂Xp

∂Xp

∂Y m

Denoting by (W ′) the gradient of S with respect to the Y 's, and
by W its gradient with respect to the X's, it can be rewritten
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as equation (22), which we also reproduce, attributing it a new
number:

(W ′)m =
∂Xp

∂Y m
Wp (23)

Equation (23) doesn't apply only to gradients; it is the funda-
mental equation linking the primed and unprimed versions of the
covariant components of a vector, that is, its components in the
Y system and in the X system.

Notice that the indices m of W ′ and p of W are downstairs. The
index p is a dummy index that is to be summed over as it also
appears upstairs in ∂Xp. It is a nice example of the very useful
Einstein summation convention and of its smooth workings.

Let's rewrite equations (19) and (23) next to each other, and re-
label them:

Contravariant components

(V ′)m =
∂Y m

∂Xp
V p (24a)

Covariant components

(W ′)m =
∂Xp

∂Y m
Wp (24b)

They look very much alike except that ∂Y m/∂Xp appears in the
�rst one, and the inverse, ∂Xp/∂Y m, in the second.

Let's recall one last time that displacements, or positions, or ve-
locities, etc., are described with vectors having contravariant com-
ponents. We saw that these change contrary to the basis change.

Gradients, on the other hand, are described with vectors the com-
ponents of which change like the basis change. That is why their
components are called covariant. But these vectors are di�erent
from the somewhat more intuitive contravariant vectors.
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In mathematics, vectors with covariant components are sometimes
viewed as vectors in the dual space of the primary vector space
under consideration. They are then dual vectors like linear forms
are. But we won't adopt this approach. For us vectors will be
things that have a one-indexed collection of contravariant compo-
nents and also of covariant components.

Equations (24a) and (24b) are fundamental equations for this
course. The reader needs to understand them, become familiar
and at ease with them, because they are absolutely central to the
entire subject of general relativity. You need to know where the
indices go for di�erent kinds of objects, and how these objects
transform. That is in some sense what general relativity is all
about: the transformation properties of di�erent kinds of objects.

Covariant and Contravariant Components

of Vectors and Tensors

We have seen two ways to think about an ordinary vector. First
of all, we can think of it like we have learned in high school: it is a
displacement with a length and a direction, that is, an arrow in a
space. This is geometrically well de�ned even before we consider
any basis.

We can also think of it more abstractly as some object that has
components. These components depend on the basis. If the com-
ponents transform in a certain way when we change basis, namely
according to equation (24a), then the object behaves exactly like
our good old vectors. Therefore we can also equate the object to
an ordinary vector. In tensor analysis we call them vectors whose
components are contravariant.

Similarly, some other objects have components that transform ac-
cording to equation (24b). They cannot be equated to our old
ordinary vectors, but to other geometric things. We mentioned
that mathematicians view them as dual vectors. We will just call
this second type of object vectors whose components are covari-
ant. In fact, we will see in lecture 2 that our abstract vectors have
a contravariant version and a covariant version.
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In tensor calculus, of which general relativity makes heavy use,17

paradoxically for those people who have a geometric mind or in-
tuition, it is often useful, at least at �rst, to forget about the
geometric interpretation of the objects we manipulate, and to fo-
cus only on how collections of numbers attached to points in our
space behave when we change systems coordinates.

A vector � be it with contravariant or covariant components � is
a special case of a tensor. Following what we just said, we are
not going to de�ne tensors geometrically. For us, at �rst, tensors
will be things that are de�ned by the way they transform. The
way they transform means the way they change (or if you prefer,
their components change) when we go from one set of coordinates
to another. Later we will give a geometric interpretation of some
tensors. We will also go deeper into contravariant and covariant
components. We will see that an object with one index can have
a contravariant version and a covariant version. All this will be
developed in the next lecture. For the time being, let's continue
to proceed step by step in our construction of the mathematical
tools necessary for general relativity.

The next step, for us now, is to talk about tensors with more than
one index.

The best way to approach tensors with several indices is to con-
sider a special, very simple case to start with. Let's imagine the
�product� of two vectors with contravariant components.18 We
consider the two vectors with contravariant components, V and
U , and we consider the following product:

17Einstein developed his ideas in special relativity without using tensor
calculus nor even Minkowski geometry, which Minkowski, who had been Ein-
stein's teacher at Zurich, introduced only in 1908. Poincaré also did some
preliminary work in this direction. At �rst Einstein did not think that this
heavy mathematical recasting of the theory of relativity was useful. But he
soon changed his mind. When general relativity was completed, in 1915, Ein-
stein said it would not have been possible without abstract non-Euclidean
geometry and tensor calculus. Hermann Minkowski (1864�1909) did not par-
ticipate in the development of general relativity because he died in 1909. His
good friend David Hilbert (1862�1943) however, did play a role in 1915; see
lecture 9.

18It is not the dot product nor the cross product. It is going to be called
the outer product or tensor product . Anyway, it is an operation that to two
things associates a third thing.
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V mUn

Without further ado, we will now always use the convention that
contravariant components, or contravariant indices refering to these
components, are noted upstairs.

The vectors V and U don't have to come from the same space. If
the dimensionality of the space of V is M , and the dimensionality
of the space of U is N , there are M ×N such products. As usual,
we use the notation V mUn to denote one product as well as the
collection of all of them � just like V m denotes one component of
the vector V , but is also a notation, showing explicitly the posi-
tion of the index, and therefore the nature of the full vector V
itself.

Let's de�ne Tmn as

Tmn = V mUn (25)

Notice that it matters where and in which order we write the in-
dices of Tmn, because, for instance, Tmn is not the same as Tnm.
The reader is invited to explain why. Soon we will also see com-
binations of indices upstairs and downstairs.

Product Tmn is a special case of tensor of rank 2. Rank 2 means
that the collection of component products has two indices. It
runs over two ranges: m runs from 1 to M , and n runs from 1 to
N . For example, if both V and U come from a four-dimensional
space, there will be 16 components V mUn. In that case Tmn, as
we saw, represents one component but also the entire collection
of 16 components.

How does Tmn transform?

For example V m and Un could be the components of the vectors
V and U in the unprimed frame of reference, the reference frame
using the X coordinates. Since we know how the individual com-
ponents transform, when we go to the Y coordinates, we can �gure
out how T transforms. Let's call (T ′)mn the mn-th component of
the tensor in the primed frame:
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(T ′)mn = (V ′)m(U ′)n

Then using equation (24a) twice, this can be rewritten as

(T ′)mn =
∂Y m

∂Xp
V p ∂Y n

∂Xq
Uq

The four terms on the right-hand side are just four numbers, so
we can change their order and write it

(T ′)mn =
∂Y m

∂Xp

∂Y n

∂Xq
V p Uq

Finally, V p Uq is just T pq. So the way T transforms is

(T ′)mn =
∂Y m

∂Xp

∂Y n

∂Xq
T pq (26)

We found in the special case of a product of ordinary vectors how
T transforms. Now this leads us to the following de�nition:

Anything that transforms according to equation (26) is called a
tensor of rank 2 with two contravariant indices.

If there were more indices upstairs, the rule would be adapted in
the obvious manner. A tensor of rank 3, all indices contravariant,
would transform like this:

(T ′)lmn =
∂Y l

∂Xp

∂Y m

∂Xq

∂Y n

∂Xr
T pqr

What kinds of things are tensors like that? Many things. Products
of vectors are particular examples, but there are other things that
are not products and still are tensors according to this de�nition.

We are going to see that the metric object gmn is a tensor. But
it is a tensor with covariant indices. So to �nish this lecture, let's
see how things with covariant indices transform. Equation (24b)
shows how an object with only one covariant index transforms. It
is a tensor of rank 1 of covariant type.
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Let's begin again with the particular case of the product of two
covariant vectors W and Z, or to speak less casually, two vectors
with covariant components. Their product transforms as follows:

(W ′)m(Z ′)n =
∂Xp

∂Y m

∂Xq

∂Y n
WpZq

Here we have discovered a new transformation property of a thing
with two covariant indices, that is, two downstairs indices.

More generally let's consider an object that we will denote Tmn.
It is no longer simply a product of vectors but a di�erent object.
However, the letter T signals that it is something that will still be
a tensor. It is a tensor with two lower indices, and it transforms
according to this equation:

T ′
mn =

∂Xp

∂Y m

∂Xq

∂Y n
Tpq (27)

Again, anything that transforms according to equation (27) is
called a tensor of rank 2 with two covariant indices.

It is left to the reader to �gure out how a tensor with one upper
index and one lower index must transform.

In the next lecture, we will also see how the metric object g of
equation (15) transforms. We will see that it is a tensor with two
covariant indices.

Then the question we will ask is: given that equation (27) is the
transformation property of g, can we or can we not �nd a coordi-
nate transformation that will turn gmn into δmn?

That is the mathematics question. It is a hard question in general.
But we will �nd the condition.


